Stormwater Outfall Monitoring Summary

Water Year 2024

Prepared by Brown and Caldwell

Prepared for Ada County Highway District November 20, 2024

Brown AND Caldwell

This document was prepared solely for ACHD in accordance with professional standards at the time the services were performed and in accordance with the contract between ACHD and Brown and Caldwell dated September 12, 2024. This document is governed by the specific scope of work authorized by ACHD; it is not intended to be relied upon by any other party except for regulatory authorities contemplated by the scope of work. We have relied on information or instructions provided by ACHD and other parties and, unless otherwise expressly indicated, have made no independent investigation as to the validity, completeness, or accuracy of such information.

Stormwater Outfall Monitoring Summary WY 2024

Ada County Highway District

11/20/2024

Table of Contents

1	Intr	oduction	1
2			
	2.1	Sample Types	2
3	Stor	mwater Outfall Monitoring Results	2
	3.1	Wet Weather Analytical Results	
	3.2	Monitored Event Pollutant Loading Results	4
	3.3	Precipitation Results	4
4	Qua	lity Assurance/Quality Control	4
	4.1	Data Quality Discussion	4
	4.2	Field QA/QC Sample Results	5
	4.2.	1 Field Duplicate and Blank Samples	5
	4.2.	2 Equipment and Rinsate Blank Samples	5
Ap	opendi	A: Figures	A-1
Ap	opendi	B: Tables	B-1
Ap	opendi	C: Storm Event Reports	C-1
	Storr	n Event Report No. 1: October 10, 2023	C-2
	Stori	n Event Report No. 2: November 19, 2023	C-63
	Stori	n Event Report No. 3: February 1, 2024	C-149
	Stori	n Event Report No. 4: February 26, 2024	C-227
	Stori	n Event Report No. 5: March 28, 2024	C-312

1 Introduction

Ada County Highway District (ACHD), Boise State University, City of Boise, City of Garden City, Drainage District #3, and the Idaho Transportation Department District #3 (Permittees) were issued a third-cycle National Pollutant Discharge Elimination System (NPDES) Phase Permit #IDS027561 (Permit) on October 1, 2021. The Permit authorizes the Permittees to discharge from municipal separate storm sewer system outfalls to the Boise River and its tributaries. According to Permit Part 6.2.1, Wet Weather Stormwater Outfall Monitoring, Permittees are required to monitor wet weather stormwater discharges according to the <u>NPDES Phase I Stormwater Outfall Monitoring Plan</u> (ACHD, 2022). The following summary covers wet weather outfall monitoring activities during water year (WY) 2024 (October 1, 2023–September 30, 2024). WY 2024 represents the third year of monitoring under the new Permit cycle.

The Stormwater Outfall Monitoring Program (SWOMP) was developed in line with the Quality Assurance Project Plan for NPDES Stormwater Permit Monitoring (QAPP) (ACHD, 2022) and describes the overall approach to stormwater outfall monitoring. Details about specific site characteristics, equipment, data collection and sample handling procedures, analytical methods, and quality assurance/quality control methodology are found in the SWOMP.

In WY 2024, data collection for the SWOMP included precipitation, flow, and water quality samples. Four outfall monitoring sites within the Permit area (Lucky, Whitewater, Main, and Americana) were monitored for flow and water quality. The water quality samples were collected from wet weather discharges and included grab samples with corresponding field parameters and composite samples, which were collected throughout the duration of a storm. Additionally, four rain gauge sites (East, Front, Cynthia Mann, and Whitewater) were maintained to provide localized precipitation data. Each rain gauge location represents at least one of the monitored subwatersheds and was used to verify that storm criteria were met.

2 Monitoring Sites, Equipment, and Sample Type

The SWOMP consists of four monitored subwatersheds: Lucky, Whitewater, Main, and Americana. Monitoring stations for each subwatershed are located near the outfalls with dedicated equipment installed at each location. Table 2-1 depicts the equipment types and referenced rain gauge site for each subwatershed. A vicinity map illustrating the location of each subwatershed, monitoring station, and rain gauge site is found in Figure 1 (Appendix A).

	Table 2-1. Monitoring Station Equipment												
Monitoring Site	Lucky	Whitewater	Main	Americana									
Sampler type	Hach AS950	ISCO 6712	Hach AS950	ISCO 6712									
Flowmeter type	Hach AV9000	ISCO Signature	Hach AV9000	ISCO Signature									
Referenced rain	Cynthia Mann	Whitewater	Front	Front and East									
gauge													
Rain gauge equipment types	Global Water tipping bucket/HOBO event logger	Hach tipping bucket/ISCO Signature	Global Water tipping bucket/HOBO event logger	Global Water tipping bucket/HOBO event logger									

2.1 Sample Types

The sample types collected during WY 2024 included grab samples and composite samples. Grab samples represent a discrete measurement from the overall storm discharge while composite samples represent the entire discharge.

Grab samples were manually collected using a swing sampler. The grab samples were submitted to the Boise City Water Quality Laboratory and analyzed for *E. coli*. At the time that the grab samples were collected, field parameters (temperature, pH, dissolved oxygen [DO], and conductivity) were measured using In-Situ smarTROLL or In-Situ AquaTROLL handheld instruments.

Composite samples were collected using automatic samplers, which worked in conjunction with flowmeters. After a predetermined volume of flow was discharged, the flowmeters triggered the samplers to collect a subsample. Each subsample was deposited into a 15-liter carboy, resulting in a flow-proportional composite sample. The composite samples were submitted to the Boise City Water Quality Laboratory, where they were split for analysis. The following constituents were analyzed during WY 2024: biological oxygen demand, 5-day; chemical oxygen demand; hardness as calcium carbonate; turbidity; total suspended solids (TSS); total dissolved solids (TDS); total phosphorus (TP); orthophosphate, as P (ortho-P); ammonia; nitrate + nitrite; total Kjeldahl nitrogen (TKN); total arsenic; dissolved and total cadmium; dissolved copper; dissolved and total lead; total mercury; and dissolved zinc.

3 Stormwater Outfall Monitoring Results

Wet weather stormwater samples were collected according to the procedures listed in the SWOMP. One of the goals in the SWOMP is to collect three accepted (unqualified) grab and composite samples from each monitoring station during each water year. In WY 2024, samples were attempted during five storms to meet this goal. A summary of the storm dates and sample types collected is shown in Table 3-1. Storm setup and sampling information are included in Table 1 (Appendix B). Storm Event Reports were created after each stormwater sampling event to monitor the status of the SWOMP and discuss the hydrological and analytical data from the grab and composite samples. These Storm Event Reports include details about the storm and weather monitoring, hydrographs, sample collection times, and water quality results. Individual Storm Event Reports for the five sampling events during WY 2024 are included in Appendix C.

	Table 3-1. Storm Events and Sample Types											
Date	Main	Americana										
October 10, 2023	G, C ^{1, 2}	G	-	G, C ³								
November 19, 2023	G, C	G, C	G, C	G ⁴ , FD, FB, C								
February 1, 2024	G ⁵, FD, FB, C	G ⁵, C ⁵, CD	G ⁵, C	G ⁵, C								
February 26, 2024	G, C	G, C	G, FD, FB, C ⁷	G, C								
March 28, 2024	-	С	G, FD, FB, C	G, CB								

Sample types: G = grab, C = composite

QC Sample types: FD = field duplicate, FB = field blank, CD = lab duplicate/composite split, CB = field blank composite

¹ Composite samples qualified due to lack of representativeness (50%–75%).

² Incomplete water quality analysis due to low composite sample volume.

³ Composite samples qualified due to lack of representativeness (50%–75%) of the calculated flow volume.

⁴ Incomplete field parameter collection on the grab sample data form due to field error.

⁵ E. coli sample qualified due to exceeded hold time.

- ⁶ Composite sample rejected due to automatic sampler triggering prior to storm event runoff. The subsamples taken prior to the event represented more than 10% of the composite volume.
- ⁷ Composite sample qualified due to automatic sampler triggering prior to storm event runoff. The subsamples taken prior to the event represented less than 10% of the composite volume.

3.1 Wet Weather Analytical Results

Field parameter results are presented in Table 2 and analytical results are presented in Table 3 (Appendix B). Graphical representation of the analytical results is provided in Figures 2–5 (Appendix A). The following assessment provides minimum and maximum measured values for WY 2024. Qualified data are included in the range of measured/reported values as well as the data analysis. Rejected data are not included in the analysis or data discussion below; however, they are presented in the tables. All measurements were recorded in accordance with QAPP and SWOMP procedures.

DO and oxygen demand

- DO ranged from 4.920 to 10.88 milligrams per liter (mg/L).
- Biological oxygen demand, 5-day concentrations ranged from 5.03 to 61.9 mg/L.
- Chemical oxygen demand concentrations ranged from 39.0 to 167 mg/L.

pH, temperature, conductivity, and hardness

- pH values ranged from 5.66 to 8.27 standard units.
- Temperature ranged from 4.75 to 17.2 degrees Celsius.
- Conductivity ranged from 81.35 to 749.2 micro-siemens per centimeter.
- Hardness ranged from (< 0.100) to 102 mg/L as calcium carbonate.

Bacteria

• *E. coli* ranged from < 1.000 to 2,720 most probable number per 100 milliliters.

Sediment

- Turbidity ranged from 8.60 to 103 nephelometric turbidity units.
- TSS ranged from 8.63 to 131 mg/L.
- TDS ranged from 44.2 to 236 mg/L.

Nutrients

- Ammonia ranged from 0.173 to 0.829 mg/L as N.
- Nitrate + nitrite ranged from 0.145 to 0.969 mg/L as N.
- TKN ranged from 0.894 to 2.43 mg/L.

Phosphorus

- TP ranged from 0.143 to 0.958 mg/L.
- Ortho-P ranged from 0.0494 to 0.768 mg/L as P.

Metals

- Total arsenic ranged from 0.660 to 5.50 micrograms per liter (μg/L).
- Dissolved cadmium ranged from below the method detection limit (MDL) (< 0.0100) to 4.50 $\mu\text{g/L}.$
- Total cadmium ranged from 0.024 to 0.130 μg/L.
- Dissolved copper ranged from 1.90 to 8.20 µg/L.
- Dissolved lead ranged from 0.0280 to 0.210 µg/L.

- Total lead ranged from 0.330 to 6.10 μ g/L.
- Total mercury ranged from below the MDL (< 0.0100) to 0.0191 μ g/L.
- Dissolved zinc ranged from 9.80 to 51.7 μ g/L.

3.2 Monitored Event Pollutant Loading Results

Pollutant loading estimates in pounds per acre (lbs/ac) were calculated for the following constituents of concern: TSS, TP, ammonia, nitrate + nitrite, and TKN. The reported concentrations were combined with runoff volumes measured during the storm event at each monitoring station. Formulas that were used, including conversion factors to estimate the loading in lbs/ac, are described in the SWOMP. Table 4 (Appendix B) presents the estimated pollutant loading of the constituents for each monitored storm. The pollutant loading contributions for each site are shown graphically in Figure 6 (Appendix A). Table 5 (Appendix B) is a summary of event loading estimates in pounds per acre for comparison between monitored drainage areas. Rejected data are not included in the analysis or data discussion below; however, they are presented in the tables. A summary of the estimated ranges of pollutant loading for the storm events monitored during WY 2024 is presented below.

- TSS loading estimates ranged from 0.0400 to 3.52 lbs/ac.
- TP loading estimates ranged from 0.000617 to 0.0114 lbs/ac.
- Ammonia loading estimates ranged from 0.000771 to 0.0170 lbs/ac.
- Nitrate + nitrite loading estimates ranged from 0.00162 to 0.0168 lbs/ac.
- TKN loading estimates ranged from 0.00367 to 0.0453 lbs/ac.

3.3 Precipitation Results

Precipitation data from the Front, East, Cynthia Mann, and Whitewater rain gauges were used to validate all targeted storms during WY 2024. Each monitoring station is associated with a rain gauge. Precipitation data recorded for each of the targeted storms can be found in Table 1 (Appendix B). Monthly totals for WY 2024 are shown in Figure 7 (Appendix A).

4 Quality Assurance/Quality Control

Quality assurance (QA) and quality control (QC) measures for the SWOMP are presented in detail in the QAPP and SWOMP. No deviations from the QAPP and SWOMP occurred during WY 2024. QA and QC measures conducted during the water year are discussed below.

4.1 Data Quality Discussion

A data validation review process was used to evaluate the analytical and field parameter results. These checklists were used to compare monitoring methods and monitoring data collected against performance criteria established to meet the data quality objectives described in the QAPP. Field parameter results and analytical results that were qualified are identified in Tables 2 and 3 (Appendix B), respectively. Further information regarding qualified samples is included in the Storm Event Reports located in Appendix C.

The following program criteria are used to identify storm events and representative composite samples.

- Storm criteria are met when the precipitation amount is greater than 0.10 inch, and the storm was preceded by a minimum 72 hours of dry weather from the previous measurable storm event (rainfall greater than 0.10 inch).
- Composite samples are considered representative of stormwater runoff when aliquots

represent greater than 75 percent of total runoff volume from the storm or greater than 6 hours of the storm, including the first hour of runoff.

For WY 2024, the following storm events did not meet the above criteria:

October 10, 2023

- The composite sample collected from the Lucky monitoring station on October 10, 2023, was qualified due lack of representativeness (50%–75%) during the storm event, as well as an incomplete water quality analysis due to low composite sample volume.
- The composite samples collected from Americana monitoring station were qualified due to lack of representativeness (50%–75%) of the calculated flow.

November 19, 2023

• The grab sample collected from the Americana monitoring station on November 19, 2023, was an incomplete field parameter due to field error.

February 1, 2024

• The grab samples collected for each monitoring station on February 1, 2024, were qualified due to *E. coli* samples exceeding hold time.

February 26, 2024

• The composite sample collected from the Main monitoring station on February 26, 2024, was qualified due to automatic sampler triggering prior to storm event runoff. The subsamples taken prior to the event represented less than 10% of the composite volume.

4.2 Field QA/QC Sample Results

During WY 2024, field QA/QC samples collected included field blanks, field duplicate samples, equipment blanks, and rinsate blanks. Sample results for all field QC samples are included in Table 6 (Appendix B).

4.2.1 Field Duplicate and Blank Samples

Field duplicates are field grab samples that were taken alongside a parent grab sample to compare the accuracy of the data. For *E. coli*, the allowable logarithmic relative percent difference (RPD) between the duplicate sample and the parent sample is 40 percent. The field duplicate sample collected for the Lucky monitoring station on February 1, 2024, did not meet the RPD standard due to the parent grab sample exceeding the hold time for E. *coli*.

Analytical results from field and composite blanks are expected to be less than the MDL. If a water quality parameter is detected in a field or composite blank, all analytical results associated with the blank that exhibit a concentration of less than five times the concentration detected in the blank, are qualified. All field blank samples collected had a result less than the MDL. The field blank composite collected on March 28, 2024, did not exhibit a concentration of less than five times the concentration detected in the blank.

4.2.2 Equipment and Rinsate Blank Samples

The equipment blank is collected before sampling for the water year begins and when new equipment is installed. For WY 2024, the equipment blank was collected on September 9, 10, and 17, 2024, at the Main, Whitewater, Americana, and Lucky monitoring stations. All composite constituents mentioned in Section 2 were detected in the sample.

The rinsate blank is collected after sampling for the water year has been completed. The rinsate blank

for WY 2024 was collected on September 10 and 17, 2024, at the Main, Whitewater, Americana, and Lucky monitoring stations. All composite constituents mentioned in Section 2 were detected in the sample. The dissolved copper result that was collected on September 10, 2024, at Americana was less than five times the value detected in the blank; therefore, it has been qualified and is considered an estimate. All other results were greater than five times the detected value in the blank and are unqualified.

Appendix A: Figures

Figure 1. Vicinity Map

Figure 2. WY 2024 *E. coli* Results

Figure 3. WY 2024 TSS, TDS, and Turbidity Results

Figure 4. WY 2024 Ammonia, Nitrate + Nitrite, and TKN Results

Figure 5. WY 2024 Total Phosphorus and Orthophosphate Results

Figure 6. WY 2024 Pollutant Loadings

Figure 7. WY 2024 Monthly Precipitation

Appendix B: Tables

- Table 1. Monitored Storms and Samples Collected
- Table 2. Field Parameter Summary
- Table 3. Analytical Results Summary
- Table 4. Event Loading for Monitored Drainages in Pounds
- Table 5. Event Loading in Pounds per Acre
- Table 6. QC Sample Summary

Table 1. Monitored Storms and Samples Collected									
Event Date	Sampling Information	Lucky	Whitewater	Main	Americana				
	Grab samples collected and submitted?	YES	YES	NO	YES				
	Composite samples collected and submitted?	YES	NO	NO	YES				
	Trigger volume	2,895 gal	800 ft ³	-	2,960 ft ³				
October 10, 2023	Sampler enable condition (in)	Level > 3.02	Level > 2.60	-	Level > 5.1				
	Percent of storm flow sampled	63%	-	-	71% ^a				
	Composite sample duration (hrs.)	2	-	-	5				
	Storm precipitation (in)	0.18	0.13	0.10	0.10/0.18				
	Grab samples collected and submitted?	YES	YES	YES	YES				
	Composite samples collected and submitted?	YES	YES	YES	YES				
	Trigger volume	2,895 gal	800 ft ³	3,411 gal	2,960 ft ³				
November 19, 2023	Sampler enable condition (in)	-	Level > 1.9	-	Level > 6.96				
	Percent of storm flow sampled	94%	91%	80%	79%				
	Composite sample duration (hrs.)	11	13	13.5	12.5				
	Storm precipitation (in)	0.42	0.61	0.50	0.50/0.58				
	Grab samples collected and submitted?	YES	YES	YES	YES				
	Composite samples collected and submitted?	YES	YES	YES	YES				
	Trigger volume	7,899 gal	2,185 ft ³	9,313 gal	8,071 ft ³				
February 1, 2024	Sampler enable condition (in)	Level > 2.68	Level > 2.55 ^b	Level > 2.06	Level > 6.46				
	Percent of storm flow sampled	90%	104% ^c	89%	83%				
	Composite sample duration (hrs.)	14.5	40 ^b	13	13.5				
	Storm precipitation (in)	0.31	0.33	0.31	0.31/0.37				
	Grab samples collected and submitted?	YES	YES	YES	YES				
	Composite samples collected and submitted?	YES	YES	YES	YES				
	Trigger volume	2,895 gal	800 ft ³	3,411 gal	2,960 ft ³				
February 26, 2024	Sampler enable condition (in)	Level > 2.72	Level > 3.05	Level > 1.87	Level > 7.59				
	Percent of storm flow sampled	90%	87%	^۵ 103%	83%				
	Composite sample duration (hrs.)	6.5	9.5	17 ^b	7				
	Storm precipitation (in)	0.13	0.21	0.18	0.18/0.18				
	Grab samples collected and submitted?	NO	NO	YES	YES				
	Composite samples collected and submitted?	NO	YES	YES	NO				
	Trigger volume	-	800 cf	3,411 gal	-				
March 28, 2024	Sampler enable condition (in)	-	Level > 3.3	Level > 1.84	-				
	Percent of storm flow sampled	_	82%	77%	-				
	Composite sample duration (hrs.)	_	13	11	-				
	Storm precipitation (in)	0.53	0.59	0.53	0.53/0.56				

-- = No data.

^a Flow data rejected due to area-velocity sensor errors. The EPA runoff calculation was used to estimate the total and sampled event runoff.

^b Programming error occurred at setup.

^c Non-stormwater samples were collected prior to the start of storm precipitation or runoff.

Table 2. Field Parameter Results										
			Field Pa	rameters						
Event Date	Monitoring Station	Dissolved Oxygen	рН	Conductivity	Temperature					
		mg/L	S.U.	µS/cm	C					
	Lucky	7.38	5.66	81.35	16.47					
October 10, 2023	Whitewater	7.65	6.28	95.09	17.17					
00000010,2020	Main	-	-	-	-					
	Americana	8.4	6.53	247.08	16.78					
	Lucky	5.09	7.27	506.44	15.7					
November 10, 2022	Whitewater	5.82	7.34	460.32	12.96					
November 19, 2023	Main	9.48	7.64	174.43	10.54					
	Americana	- ^{3J}	_ ^{3J}	_ ^{3J}	14.16					
	Lucky	4.92	7.15	593.29	14.62					
Eebruary 1, 2024	Whitewater	8.42	7.60	287.02	11.10					
rebluary 1, 2024	Main	10.11	8.03	353.6	6.30					
	Americana	10.05	7.73	552.2	8.34					
	Lucky	9.89	8.27	125.9	4.75					
Echrychy 26 2024	Whitewater	10.88	7.74	749.2	5.97					
rebludiy 20, 2024	Main	9.79	7.94	165.88	9.53					
	Americana	10.54	7.53	470.55	8.74					
	Lucky	-	-	-	-					
March 28, 2024	Whitewater	-	-	-	-					
Walch 20, 2024	Main	10.02	7.82	116.08	10.91					
	Americana	10.57	7.28	255.40	9.79					

-- = No data.

^{3J} Incomplete field parameter collection on the grab sample data form due to field error.

									Т	able 3. Analytical	Results Summary											
												Analytical Para	ameters									
Event Date	Monitoring Station	Sample ID	E. coli	BOD₅	COD	Hardness as CaCO3	Turbidity	TSS	TDS	Total Phosphorus (TP)	Orthophosphate (Ortho-P)	Ammonia	Nitrate + Nitrite	TKN	Arsenic, total	Cadmium, dissolved	Cadmium, total	Copper, dissolved	Lead, dissolved	Lead, total	Mercury, total	Zinc, dissolved
			MPN/100 mL	mg/L	mg/L	mg/L	NTU	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
	Lucky	231010-03-WG/WC	2720	17.5 ^{1J}	83 ^{1J}	47.2 ^{1J}	19.6 ^{1J}	17.4 ^{1J}	126 ^{1J}	0.485 ¹⁾	-	0.336 ^{1J}	-	1.97 ^{1J}	2.6 ^{1J}	-	0.035 ^{1J}	-	-	0.65 ^{1J}	0.0118 ^{1J}	-
October 10, 2023	Whitewater	231010-11-WG	1990	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Main	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Americana	231010-14-WG/WC	129.6	19.7 ^{2J}	77 ^{2J}	< 0.100 ^{2J}	33.6 ^{2J}	23.6 ^{2J}	236 ^{2J}	0.308 ^{2J}	0.169 ^{2J}	0.353 ^{2J}	0.930 ^{2J}	1.44 ^{2J}	5.5 ^{2J}	0.021 ^{2J}	0.072 ^{2J}	8.2 ^{2J}	0.095 ^{2J}	2.4 ^{2J}	< 0.0100 ^{2J}	22.0 ^{2J}
	Lucky	231119-03-WG/WC	2.0	59.5	137	35.8	8.6	8.63	136	0.710	0.538	0.530	0.145	1.76	0.93	0.012	0.030	3.5	0.085	0.33	< 0.0100	32.7
November 19, 2023	Whitewater	231119-11-WG/WC	99.0	61.9	167	45.0	19.7	27.3	180	0.958	0.768	0.527	0.182	2.07	1.7	< 0.0100	0.041	5.0	0.21	2.2	< 0.0100	32.3
	Main	231119-12-WG/WC	30.9	19.9	61.0	19.3	11.7	16.2	61.0	0.226	0.167	0.610	0.246	1.14	0.66	0.015	0.045	2.7	0.12	1.7	< 0.0100	25.9
	Americana	231119-14-WG/WC	1340.0	36.5	94.0	57.8	15.0	21.7	153	0.504	0.402	0.454	0.614	1.27	2.1	0.022	0.061	4.0	0.11	1.9	< 0.0100	27.2
	Lucky	240201-03-WG/WC	< 1.0 ^{4J}	7.27	39.0	16.0	60.5	18.8	52.8	0.174	0.100	0.173	0.204	0.894	0.85	< 0.0100	0.024	2.0	0.056	0.82	< 0.0100	17.5
February 1 2024	Whitewater	240201-11-WG/WC	68.9 ^{4J}	9.34 ^{1R}	82 ^{1R}	43 ^{1R}	106 ^{1R}	58.4 ^{1R}	139 ^{1R}	0.321 ^{1R}	0.171 ^{1R}	0.169 ^{1R}	0.375 ^{1R}	1.33 ^{1R}	2.4 ^{1R}	< 0.0100 ^{1R}	0.058 ^{1R}	3.9 ^{1R}	0.18 ^{1R}	4.8 ^{1R}	0.0148 ^{1R}	25.7 ^{1R}
10010019 1, 2024	Main	240201-12-WG/WC	238.2 ^{4J}	5.74	77.0	18.3	103	59.8	64.2	0.143	0.0557	0.351	0.209	1.12	1.4	0.012	0.066	3.6	0.084	4.1	0.0112	18.4
	Americana	240201-14-WG/WC	65.0 ^{4J}	6.98	55.0	93.3	89.6	50.7	224	0.213	0.116	0.193	0.905	1.05	3.4	0.016	0.063	3.4	0.090	4.2	< 0.0100	17.3
	Lucky	240226-03-WG/WC	37.9	13.5	60.0	53.2	18.9	18.1	114	0.262	0.124	0.476	0.969	1.71	2.6	4.5	0.031	4.5	0.028	0.72	0.0150	13.5
February 26, 2024	Whitewater	240226-11-WG/WC	38.3	12.6	84.0	77.8	52.3	47.3	182	0.347	0.174	0.596	0.921	2.43	2.6	0.014	0.062	4.4	0.093	3.8	0.0151	24.5
February 26, 2024	Main	240226-12-WG/WC	24.3	13.9 ^{5J}	119 ^{5J}	29.8 ^{5J}	94.7 ^{5J}	104 ^{5J}	85.2 ^{5J}	0.231 ^{5J}	0.0631 ^{5J}	0.829 ^{5J}	0.424 ^{5J}	1.96 ^{5J}	1.5 ^{5J}	0.032 ^{5J}	0.13 ^{5J}	5.6 ^{5J}	0.12 ^{5J}	6.1 ^{5J}	0.0191 ^{5J}	51.7 ^{5J}
	Americana	240226-14-WG/WC	125.9	12.6	85.0	102	51.1	54.3	214	0.276	0.106	0.496	0.940	1.47	3.3	0.021	0.097	4.0	0.063	3.9	0.0148	24.3
	Lucky	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
March 28, 2024	Whitewater	240328-11-WC	-	8.20	84.0	31.9	26.2	131	76.0	0.318	0.131	0.236	0.277	1.63	2.0	< 0.0100	0.074	1.9	0.097	5.8	0.0151	9.80
March 28, 2024	Main	240328-12-WG/WC	21.6	5.03	104	12.6	24.6	91.7	44.2	0.145	0.0494	0.293	0.151	1.18	1.1	< 0.0100	0.071	2.3	0.068	5.9	0.0171	14.7
	Americana	240328-14-WG	365.4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

– = No data.

 $^{1\mathrm{J}}$ Data qualified due to lack of representativeness (50%–75%).

²⁾ Data qualified due to lack of representativeness (50%–75%) of the calculated flow volume.

^{4J} *E. coli* sample qualified due to exceeded hold time.

^{5J} Composite sample qualified due to non-stormwater sample volume comprising less than 10% of the total composite sample volume.

^{1R} Composite sample rejected due to non-stormwater sample volume comprising 10% or more of the total composite sample volume.

WG = Wet grab sample.

WC = Wet composite sample.

	Table 4. Event Loadin	g for Monitore	d Drainages in I	Pounds		
Event Date	Monitoring Station	TSS	Total Phosphorus	Ammonia	Nitrate + Nitrite	TKN
	Lucky	4.20 ^{1J}	0.118 ^{1J}	0.0810 ^{1J}	-	0.477 ^{1J}
October 10, 2023	Whitewater	-	-	-	-	-
000000110,2020	Main	-	-	-	-	-
	Americana	52.6 ^{2J}	0.686 ^{2J}	0.786 ^{2J}	2.07 ^{2J}	3.21 ^{2J}
	Lucky	10.1	0.832	0.621	0.170	2.06
November 10, 2023	Whitewater	139	4.87	2.68	0.926	10.5
November 19, 2025	Main	35.5	0.496	1.34	0.540	2.50
	Americana	430	9.98	8.99	12.2	25.1
	Lucky	16.9	0.157	0.156	0.184	0.805
February 1, 2024	Whitewater	168 ^{1R}	0.92 ^{1R}	0.750 ^{1R}	1.08 ^{1R}	3.81 ^{1R}
rebludiy 1, 2024	Main	74.4	0.178	0.437	0.260	1.39
	Americana	825	3.46	3.140	14.7	17.1
	Lucky	4.48	0.0648	0.118	0.240	0.423
Echryon 26 2024	Whitewater	104	0.762	1.31	2.02	5.34
rebluary 20, 2024	Main	70.6 ^{5J}	0.157 ^{5J}	0.563 ^{5J}	0.288 ^{5J}	1.33 ^{5J}
	Americana	474	2.41	4.33	8.21	12.8
	Lucky	-	-	-	-	-
March 28, 2024	Whitewater	1266	3.07	2.28	2.68	15.7
Walui 20, 2024	Main	278.2	0.440	0.889	0.458	3.58
	Americana	-	-	-	-	-

-- = No data

 11 Data qualified due to lack of representativeness (50%–75%).

²⁾ Data qualified due to lack of representativeness (50%–75%) of the calculated flow volume.

^{5J} Composite sample qualified due to non stormwater sample volume comprising less than 10% of the total composite sample volume.

^{1R} Composite sample rejected due to non stormwater sample volume comprising 10% or more of the total composite sample volume.

	Та	ble 5. Event Loa	ding in Pounds/	/Acre		
Event Date	Monitoring Station	TSS	Total Phosphorus	Ammonia	Nitrate + Nitrite	TKN
	Lucky	0.0400 ^{1J}	0.00112 ^{1J}	0.00771 ^{1J}	-	0.00454 ^{1J}
October 10, 2022	Whitewater	-	-	-	-	-
October 10, 2023	Main	-	-	-	-	-
	Americana	0.0601 ^{2J}	0.000784 ^{2J}	0.000898 ^{2J}	0.00237 ^{2J}	0.00367 ^{2J}
	Lucky	0.0962	0.00792	0.00591	0.00162	0.0196
Nevember 10, 2022	Whitewater	0.279	0.00978	0.00538	0.00186	0.0211
November 19, 2025	Main	0.449	0.00628	0.0170	0.00684	0.0316
	Americana	0.491	0.0114	0.0103	0.0139	0.0287
	Lucky	0.161	0.00150	0.00149	0.00175	0.00767
February 1 2024	Whitewater	0.337 ^{1R}	0.00185 ^{1R}	0.00151 ^{1R}	0.00217 ^{1R}	0.00765 ^{1R}
10010019 1,2024	Main	0.942	0.00225	0.00553	0.00329	0.0176
	Americana	0.943	0.00395	0.00359	0.0168	0.0195
	Lucky	0.043	0.000617	0.00112	0.00229	0.00403
February 26, 2024	Whitewater	0.209	0.00153	0.00263	0.00406	0.0107
rebludly 20, 2024	Main	0.894 ^{5J}	0.00199 ^{5J}	0.00713 ^{5J}	0.00365 ^{5J}	0.0168 ^{5J}
	Americana	0.542	0.00275	0.00495	0.00938	0.0146
	Lucky	-	-	-	-	-
March 28, 202/	Whitewater	2.54	0.00616	0.00458	0.00538	0.0315
March 20, 2024	Main	3.52	0.00557	0.0113	0.00580	0.0453
	Americana	-	-	-	-	-

-- = No data.

 11 Data qualified due to lack of representativeness (50%–75%).

 2J Data qualified due to lack of representativeness (50%–75%) of the calculated flow volume.

^{5J} Composite sample qualified due to non stormwater sample volume comprising less than 10% of the total composite sample volume.

^{1R} Composite sample rejected due to non stormwater sample volume comprising 10% or more of the total composite sample volume.

									Table 6.	QC Sample	Summary												
										Anal	lytical Parame	eters											
Event Date	Parent Sample	Sample ID	QC Sample Type	E. coli	BOD₅	COD	Hardness as CaCO ₃	Turbidity	TSS	TDS	Total Phosphorus	Orthophosphate (Ortho-P)	Ammonia	Nitrate + Nitrite	TKN	Arsenic, total	Cadmium, dissolved	Cadmium, total	Copper, dissolved	Lead, dissolved	Lead, total	Mercury, total	Zinc, dissolved
				MPN/100 mL	mg/L	mg/L	mg/L	NTU	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
	Americana grab	231119-14-001	Field blank	< 1.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
November 19, 2023	Americana grab	231119-14-101	Field duplicate	866.4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Calculated parent/duplicate RPD			4%	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Lucky grab	240201-03-001	Field blank	< 1.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
February 1, 2024	Lucky grab	240201-03-101	Field duplicate	2 ^{4J}	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
February 1, 2024	C	alculated parent/dup	plicate RPD	100%	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Whitewater Composite	240201-11-103	Lab duplicate/composite split	-	8.9	83.0	42.4	113	53.8	140	0.312	0.172	0.170	0.378	1.35	2.4	0.011	0.052	3.7	0.19	4.9	0.0127	26.6
	Main grab	240226-12-001	Field blank	< 1.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
February 26, 2024	Main grab	240226-12-101	Field duplicate	26.9	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Calculated parent/duplicate RPD			2%	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Main grab	240328-12-001	Field blank	< 1.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
March 28, 2024	Main grab	240328-12-101	Field duplicate	17.3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Walch 20, 2024	C	alculated parent/dup	plicate RPD	5%	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	240328-14-002	Field blank composite	-	< 2.00	< 7.00	< 0.100	< 0.3	< 0.900	< 20.0	< 0.0120	< 0.003	< 0.0450	< 0.0250	< 0.100	< 0.0700	< 0.0100	< 0.0100	< 0.150	-	< 0.0100	< 0.0100	< 0.500
September 9, 2024	-	240909-03-003	Equipment blank	-	< 2.00	< 7.00	< 0.100	< 0.3	< 0.900	< 25.0	< 0.0120	< 0.003	< 0.0450	< 0.0250	< 0.100	< 0.0500	< 0.0100	< 0.0200	0.59	< 0.0100	< 0.0100	< 0.0100	1.3
	-	240910-14-004	Rinsate blank	-	< 2.00	< 7.00	< 0.100	< 0.3	1.00	< 25.0	< 0.0120	< 0.003	< 0.0450	< 0.0250	< 0.100	< 0.0500	< 0.0100	< 0.0200	0.91	< 0.0100	0.026	< 0.0100	1.3
Sentember 10, 202/	-	240910-14-003	Equipment blank	-	< 2.00	< 7.00	< 0.100	< 0.3	< 0.900	< 25.0	< 0.0120	< 0.003	< 0.0450	< 0.0250	< 0.100	< 0.0500	< 0.0100	< 0.0200	0.93	< 0.0100	< 0.0100	< 0.0100	4.0
September 10, 2024	-	240910-11-003	Rinsate blank	-	< 2.00	< 7.00	< 0.100	< 0.3	< 0.900	< 25.0	< 0.0120	0.00795	< 0.0450	< 0.0250	< 0.100	< 0.0500	< 0.0100	< 0.0200	0.38	< 0.0100	0.017	< 0.0100	< 0.500
	-	240910-11-003	Equipment blank	-	< 2.00	< 7.00	< 0.100	< 0.3	< 0.900	< 25.0	< 0.0120	< 0.003	< 0.0450	< 0.0250	< 0.100	< 0.0500	< 0.0100	< 0.0200	0.59	< 0.0100	< 0.0100	< 0.0100	2.5
Sentember 17 2024	-	240917-12-004	Rinsate blank	-	< 2.00	< 7.00	< 0.100	< 0.3	< 0.900	< 25.0	< 0.0120	< 0.003	< 0.0450	< 0.0250	< 0.100	< 0.0500	< 0.0100	< 0.0200	0.20	< 0.0100	< 0.0100	< 0.0100	1.1
ooptember 17, 2024	-	240917-12-003	Equipment blank	-	< 2.00	< 7.00	< 0.100	< 0.3	< 0.900	< 25.0	< 0.0120	< 0.003	< 0.0450	< 0.0250	< 0.100	< 0.0500	< 0.0100	< 0.0200	1.4	< 0.0100	0.023	< 0.0100	1.7
	Allov	vable RPD		40%	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%

– = No data.

^{4J} *E. coli* sample qualified due to exceeded hold time.

Cells highlighted in gray are flagged for discussion.

Appendix C: Storm Event Reports

Storm Event Report No. 1: October 10, 2023 Storm Event Report No. 2: November 19, 2023 Storm Event Report No. 3: February 1, 2024 Storm Event Report No. 4: February 26, 2024 Storm Event Report No. 5: March 28, 2024

Technical Memorandum

1290 W. Myrtle St. Suite 340 Boise, ID 83702

Phone: 801.316.9859

- Prepared for: Ada County Highway District
- Project Title: NPDES Phase I Stormwater Support WY 2024
- Project No.: 159103

Technical Memorandum

- Subject: ACHD Phase I Storm Event Report for October 10, 2023
- Date: February 14, 2024
- To: Monica Lowe
- Cc: Steven Turner Kristen Chisholm
- From: Zuly Lapa, Project Engineer
- Prepared by: Zuly Lapa, EIT, Project Engineer

Reviewed by: Melissa Jannusch, PE, Project Manager

Limitations:

This document was prepared solely for ACHD in accordance with professional standards at the time the services were performed and in accordance with the contract between ACHD and Brown and Caldwell dated October 10, 2023. This document is governed by the specific scope of work authorized by ACHD; it is not intended to be relied upon by any other party except for regulatory authorities contemplated by the scope of work. We have relied on information or instructions provided by ACHD and other parties and, unless otherwise expressly indicated, have made no independent investigation as to the validity, completeness, or accuracy of such information.

Section 1: Introduction

The Environmental Protection Agency Region 10 reissued a Municipal Separate Storm Sewer System Phase I National Pollutant Discharge Elimination System Permit (NPDES Permit), effective October 1, 2021, to Ada County Highway District (ACHD), Boise City, Ada County Drainage District No. 3, Idaho Transportation Department District 3, Boise State University, and Garden City. Under the NPDES Permit, Permittees are required to continue to conduct wet weather stormwater outfall monitoring and subwatershed monitoring. Four outfall monitoring sites (Lucky, Whitewater, Main, and Americana) and one subwatershed monitoring site (AS_6) have been established. The AS_6 site represents a subwatershed located within the Americana watershed. At each site, a minimum of three composite and three grab samples will be collected during Water Year (WY) 2024 (October 1, 2023, through September 30, 2024). The following storm event report summarizes stormwater sampling results from the October 10, 2023, storm event.

Section 2: Project Status

Table 2-1 is a summary of the sample types collected to date for WY 2024 Phase I Stormwater Outfall Monitoring. When samples are qualified, additional samples will be attempted from subsequent storms to collect unqualified samples.

	Table 2-1. WY 2024 Samples Collected											
Date	Lucky	Whitewater	Main	Americana	AS_6							
October 10, 2023	G , C ^{1,2}	G		G , C ^{,3}								
Unqualified Samples:	1G	1G		1G								
Samples Remaining:	2G, 3C	2G, 3C	3G, 3C	2G, 3C	3G, 3C							

Notes:

-- = no samples taken

C = composite sample

 $G = grab \ sample$

¹Composite samples qualified due to lack of representativeness (50% – 75%).

² Incomplete water quality analysis due to low composite sample volume.

³ Composite samples qualified due to lack of representativeness (50% – 75%) of the calculated flow volume.

Section 3: Storm Event Summary

The October 10, 2023, storm event and the subsequent preparation and sampling efforts are detailed in the following sections.

3.1 Storm Detail

A summary of the forecast on which monitoring decisions were based is detailed below. The sampling event communication form that describes the forecast and summarizes the decision-making process from October 10, 2023, is included in Attachment A for reference.

Tuesday, October 10, 2023 - Wednesday, October 11, 2023

- On the morning of October 10, the National Weather Service issued a forecast for widespread rain in the Boise area, starting October 10 at 1800 and ending on October 11 at 0600. The chance of precipitation was 80%, with 0.10 to 0.20 inches of precipitation forecasted.
- Setup was accomplished early morning of October 10. An expected precipitation depth of 0.11 inches was used to set trigger volumes at monitoring stations. A runoff calculations worksheet showing how the trigger volumes were calculated is included in Attachment A.
- The runoff started approximately on October 10 at 1216 and ended on October 11 at 2300. There was a runoff break in between October 10 at 0936 and October 11 at 0738.
- Precipitation totals ranged between 0.10 and 0.18 inches at local rain gauges.

Flow measurements and precipitation data are listed in Table 1 along with a sampling summary. Hydrograph for the Lucky, Whitewater, and Americana site showing flow, rain, and sample collection data are included in Attachment B.

3.2 Sampling Summary

Lucky, Whitewater, Americana and AS_6 monitoring stations were set up on October 10, 2023, to collect flow-proportional composite samples during the storm. Sampler enable conditions were programed into the Lucky, Whitewater, and Americana flowmeters. A site-specific velocity cutoff value was programmed into the AS_6 flowmeter. Setup and sampling information are included in Table 1. The field forms completed during setup/shutdown and sampling are included in Attachment C.

Grab Samples

Two, two-member team mobilized to collect stormwater runoff grab samples and verify operation of the automatic sampling equipment on October 10 at 1823. Grab samples for Lucky, Whitewater and Americana were submitted to the West Boise Water Quality Lab (WQL) at 2003 on October 10. Results for grab samples, including field parameter and analytical data, are included in Table 2. Laboratory analytical reports are included in Attachment D.

Composite Samples

Composite samples were collected at the Lucky and Americana monitoring station and submitted to the West Boise WQL at 1242 on October 11. Whitewater collected two composite samples and was not submitted to the WQL. A partial water quality analysis was conducted on the Lucky composite samples due to low composite sample volume. The volume of the Americana composite sample was sufficient for analysis of all parameters. Analytical results are shown in Table 2 and pollutant loading estimates for the event are detailed in Table 3. Laboratory analytical reports are included in Attachment D.

Section 4: Quality Assurance/Quality Control

No quality control samples were collected during the October 10, 2023, storm event.

Data quality objectives for this storm were evaluated and tracked using the data validation review checklist included in Attachment A. An accepted composite sample represents at least 75 percent of the total discharge or at least 6 hours of the storm duration. The composite sample collected at Lucky was qualified because it represented 63% of the storm runoff and lasted approximately 2 hours. The composite sample collected at Americana was calculated using the EPA runoff calculation. After thorough flow and precipitation data review, it was determined that the area-velocity sensor showed inaccurate flow level readings and did not align with the precipitation data. The EPA runoff calculation estimates the total event runoff and sampled

runoff values based on impervious surface of the drainage basin (see Figure 4-1 for EPA's runoff calculation equation). Based on the estimated values, approximately 71% of the total storm runoff was sampled therefore the Americana composite samples were qualified. See Table 4-1 for total and sampled runoff calculations and Attachment B.

Runoff Calculation
R = P * Pj * Rv
Where:
R = Event Runoff (inches)
P = Event Rainfall (inches)
Pj = Fraction of annual rainfall events that produce runoff (0.9)
Rv = Runoff Coefficient
Figure 4-1: EPA Runoff Calculation

	Table 4-1. Total and Sample Runoff Calculations										
From Table 2-1 of the Stormwater Outfall Monitoring Plan:											
Americana Subwatershed Area =	875 acres										
Percent Impervious Groundcover =	39 %										
Impervious Groundcover =	481 acres										
Total Runoff from the Americana Watershed: Sampled Runoff from the Americana Site:											
P = 0.14 inches		P =	0.1	inches							
Pj = 0.9		Pj =	0.9								
Rv = 0.39		Rv =	0.39								
R = 0.049 inches		R =	0.035	inches							
Calculated Sampled Runoff Precipitation											
Sampled/ Total Sampled Runoff x 100	0 = 71%										

The acceptance and performance criteria for analytical and non-analytical criteria, except for Lucky and Americana composite samples, were met for this storm event.

Section 5: Notes and Recommendations

Americana

During set-up, a "Replace pump tubing" warning message was encountered when the sampler program was started. The ISCO Operating Manual was used to reset the program settings and reset the pump count. The message did not appear again when the sampler program was restarted.

Main

During set-up, the Main flow meter was providing positive flow readings, but no flow was observed in the storm drain pipe. The flow module was replaced, but this did not resolve the issue. Therefore, the Main site was not targeted at this event.

Data Tables

TAB-1 ACHD_231010 SER PI SER_159103_FINAL

Table 1. Sampling and Flow Summary						
	Lucky	Whitewater	Main	Americana	AS_6	
Grab samples collected and submitted?	YES	YES	NO	YES	NO	
Composite samples collected and submitted?	YES	NO	NO	YES	NO	
Trigger volume (gal or ft ³)	2,895 gal	800 ft ³		2960 ft ³	221 ft ³	
Velocity cutoff (fps)					0.02	
Sampler enable condition (in)	Level > 3.02"	Level > 2.60 "		Level > 5.1"		
Runoff start time	1216 ¹	1407 ¹		1602 ²		
Grab sample collection time	1829	1904		1823		
Composite sample stop time	0906			1150		
Runoff stop time	1110 ²	2300 ²		1630 ²		
Volume of Discharge Sampled (ft ³)	2,439			111,486 ^{2,3}		
Total runoff volume (ft ³)	3,882	5,838		156,081 ^{2,3}		
Percent of storm flow sampled (%)	63%			71% ³		
Composite sample duration (hrs)	2			5		
Storm Precipitation (in)	0.18	0.13	0.10	0.10/0.18	0.10/0.18	
Referenced Rain Gauge	Cynthia Mann	Whitewater	Front	Front/East	Front/East	
Sampler messages (counts): Success	8	2		11		
Number of composite bottles filled	1			1		
Composite sample volume (Approx.; ml)	5,000			5,750		

 $^{\rm 1}$ Runoff started on 10/10/23.

 $^{\rm 2}$ Runoff ended on 10/11/23.

³ Flow data rejected due to area-velocity sensor errors . The EPA runoff calculation was used to estimate the total and sampled event runoff.

											Ta	ble 2. Field a	nd Analytica	al Data Sum	imary												
				Field	Parameters			Analytical Parameters																			
Monitoring	Comple Date		Dissolved		Construction in	Tomo overhune	E anli	Completo			Hardness as	Turkiditer				Orthophosphate	Ammonia as	Nitrate +		A	Cadmium,	Cadmium,				Mercury,	
Station	Sample Date	Sample ID Grab	Oxygen	pn	Conductivity	Temperature	E. COII	Sample ID	0005		CaCO ₃	Turbially		105	Phosphorus	as P	N	Nitrite as N	INN	Arsenic, totai	dissolved	total	dissolved	dissolved	total	total	dissolved
			mg/L				mpn/100 mL	Composite	mg/L	mg/L	mg/L		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Lucky	10/10/2023	231010-03-WG	7.38	5.66	81.35	16.47	2720.0	231010-03-WC	17.5 ^{1J}	83 ^{1J}	47.2 ¹¹	19.6 ^{1J}	17.4 ¹⁰	126 ^{1J}	0.485 ^{1J}		0.336 ^{1J}		1.97 ^{1J}	2.6 ^{1J}		0.035 ^{1J}			0.65 11	0.0118 ^{1J}	
Whitewater	10/10/2023	231010-11-WG	7.65	6.28	95.09	17.17	1990.0																				
Main	10/10/2023																										
Americana	10/10/2023	231010-14-WG	8.4	6.53	247.08	16.78	129.6	231010-14-WC	19.7 ^{2J}	77 ^{2J}	<0.100 ^{2J}	33.6 ^{2J}	23.6 ^{2J}	236 ^{2J}	0.308 ^{2J}	0.169 ^{2J}	0.353 ^{2J}	0.930 21	1.44 ^{2J}	5.5 ^{2J}	0.021 ^{2J}	0.072 ^{2J}	8.2 ^{2J}	0.095 ^{2J}	2.4 ^{2J}	< 0.0100 ^{2J}	22.0 ^{2J}
AS_6	10/10/2023	-									-																

Table 3. Event Pollutant Loading Estimates in Pounds						
Monitoring Station	Event Date	TSS	Total Phosphorus	Ammonia as N	Nitrate + Nitrite as N	TKN
Lucky	10/10/2023	4.20 ^{1J}	0.118 ^{1J}	0.0810 ^{1J}		0.477 ^{1J}
Whitewater	10/10/2023					
Main	10/10/2023					
Americana	10/10/2023	52.6 ^{2J}	0.686 ^{2J}	0.786 ^{2J}	2.07 ^{2J}	3.21 ^{2J}
AS_6	10/10/2023					

- = No data.

 $^{\mbox{\tiny LI}}$ Data qualified due to lack of representativeness (50% - 75%).

^{2J} Data qualified due to lack of representativeness (50% - 75%) of the calculated flow volume.

Attachment A: Supplemental Documents

Sampling Event Communication Form Data Validation Checklist Runoff Calculation Worksheet

SAMPLING EVENT COMMUNICATION FORM

Date: 10/10/2023	Time: 4:10 PM	Initials	: ML
Is there a targeted sampling event du		Yes	
(Or, if it is Friday, is a targeted event expected before 5:00 PM Monday?			

Past 72 hr Precip	0.02″
Date and time of expected event	10/10/2023 6 PM – 10/11/2023 6 AM
Expected amount of precipitation	0.10" - 0.20"
Percent chance of precipitation	80%
Percent chance of >0.10" over 12 hours	71%

NWS Update

Targeted Station	& Samples				
Lucky	Whitewater	Main	Americana	AS_6	State (Phase II)
🛛 Grab	🖾 Grab	🗆 Grab	🖾 Grab	🛛 Grab	🗆 Grab
oxtimes Composite	🛛 Composite	Composite	🛛 Composite	🛛 Composite	Composite

Type of Forecasted Precipitation		
🗆 Light Rain	🖾 Rain	🗆 Rain on Snow
Scattered Showers	🖾 Thunder Showers	Snowmelt

□ Scattered Showe
□ Other:

Reasons for Not Targeting a Forecasted Storm and/or Stations

□ Holiday

□ Waiting on Antecedent Dry Period – Expires:

 \boxtimes Equipment Concerns: Problems with Main measuring flow when none present. Suspect AV sensor.

 \Box Other:

<u>Text Forecast</u>

NWS Forecast for: Garden City ID Issued by: National Weather Service Boise, ID

Last Update: 2:53 pm MDT Oct 10, 2023

This Afternoon: Showers likely and possibly a thunderstorm. Mostly cloudy, with a high near 68. West southwest wind around 6 mph. Chance of precipitation is 60%.

Tonight: Showers and possibly a thunderstorm. Low around 47. West southwest wind around 6 mph becoming calm. Chance of precipitation is 90%. New rainfall amounts between a tenth and quarter of an inch, except higher amounts possible in thunderstorms.

Wednesday: Showers and possibly a thunderstorm before 1pm, then a chance of showers. High near 58. West northwest wind 5 to 14 mph, with gusts as high as 23 mph. Chance of precipitation is 90%.

Wednesday Night: A 30 percent chance of showers before 1am. Patchy fog after 4am. Otherwise, cloudy, then gradually becoming partly cloudy, with a low around 42. Northwest wind 5 to 14 mph, with gusts as high as 23 mph.

Thursday: Patchy fog before 1pm. Otherwise, sunny, with a high near 63. Northwest wind 5 to 10 mph. Thursday Night: Mostly clear, with a low around 42.

Friday: Sunny, with a high near 68.

Friday Night: Partly cloudy, with a low around 48.
Saturday: Mostly cloudy, with a high near 67. Saturday Night: A 20 percent chance of showers after 1am. Mostly cloudy, with a low around 49. Sunday: A 20 percent chance of showers. Partly sunny, with a high near 70. Sunday Night: Mostly cloudy, with a low around 50. Monday: Partly sunny, with a high near 74. Monday Night: A 30 percent chance of showers. Mostly cloudy, with a low around 52. Tuesday: A chance of showers. Mostly cloudy, with a high near 66.

Forecast Discussion

Area Forecast Discussion National Weather Service Boise ID 233 PM MDT Tue Oct 10 2023

.SHORT TERM...Tonight through Thursday night...Showers have steadily increased through the day in eastern Oregon, and as of 2 PM MDT showers were also getting into the Treasure Valley and Weiser River Valley. No lightning has been observed yet, but the incoming upper trough is expected to provide enough instability later this afternoon and evening for isolated thunderstorms within about 50 miles either side of the OR/ID border. Showers will become widespread tonight in western Idaho, then decrease Wednesday morning except along the ID/NV border and the Boise Mountains and eastern Valley County. Total precipitation tonight through Wednesday should be .10 to .20 inch in the valleys and .25 to .50 inch in the mountains, including 1-2 inches of snow above 6500 feet MSL. Later Wednesday the main upper low off the northwest coast will move rapidly inland and bring another chance of showers to eastern Oregon, then into western Idaho early Wednesday evening. Late Wednesday night the low will be in eastern Wyoming and clouds will decrease in our CWA. Clearing skies will allow radiational cooling resulting in patchy **fog** in the valleys Thursday morning. Thursday afternoon and night look mostly clear. Winds will be light to moderate westerly tonight and Wednesday morning, then increase almost to advisory speeds Wednesday afternoon in south-central Idaho. Winds will die down rapidly Wednesday night.

.LONG TERM...Friday through Tuesday...A warming and drying trend is forecast Friday through Monday, possibly Tuesday, as another upper <u>ridge</u> builds inland from the Pacific. High temps will reach at least the mid 70s in the valleys by Monday, with a 10 percent chance of 80 degrees again. Low temps will moderate more slowly. Unfortunately, latest models bring a lot of <u>high clouds</u> in from the Pacific on Saturday which may spoil the view of the annular solar eclipse Saturday morning.

Hourly Forecast

Storm Event QA/QC Checklist – Phase I

STORM DATE 231010)		ALC: NO)	
A. Event and Data Completeness	Yes	No	N/A	Notes	1.0				
1. Field data sheets filled out completely and clearly	X								
2. Field parameters reviewed, and any problems/issues addressed	X			ww	Field 1	parameters difficul	t to rea	d: veri	Fied
3. All samples collected as specified	X			DO i	7.65	Mall + (p. Cond. 15	95.09 0	sichad.	Shurens
4. All samples delivered to lab promptly (review chain of custody rpts)	X							7.0	
5. Inconsistencies/clarifications discussed with sampling team member	X	1							
6. All analytical reports from lab received	X			1					
B. Validation and Verification Methods	Yes	No	N/A	Notes					
1. Outliers and unexpected values discussed with lab			X						
2. Appropriate analytical methods used	X								
3. All lab QA samples were within method acceptance criteria	X								
4. All samples reviewed and data qualifiers assigned if needed	X								
5. Data quality objective achieved	X								
C. Specific Storm and Sample QA/QC Criteria	Lucky	Whitewat er	Main	American a	AS_6	Program Criteria	Met	Qualify	Reject
1. Antecedent dry period (inches in previous 72-hours)	0.03	0.00	-	0.01	0.01	< 0.11" in 72 hrs	X		
2. Precipitation (inches)	0.18	0.13	-	0.10/1.18	0.1%.18	> 0.10"	X		
3. Sampled amount (% of total run-off)	63%	-	_	71%		>= 75% or >= 6 hrs: no qualifier		1 V	
4. Composite sample duration (hours)	2.0	-	-	5.0	-	< 50% and < 75%: quality			l
4. Ecoli sample holding time (hours)	2.0	1.5	2.0	2	-	<=8 hrs: no qualifier >8 and <=16 hrs.: qualify >16 hrs.: reject	X		
5. Filtering of samples for dissolved parameter analysis (hours)	-	-	-	1.5	-	<= 24 hrs: no qualifier > 24 hrs.: reject	X		

D. Notes

Lucky - No diss. parameters due to low volume and qualified due to lack of representativeness WW - composite discarded due to low Sample volume (z subsamples) Main - Not setup for storm due to flow that sensor error. Flow readings when no flow present americana - Composites qualified for reprine lack of representativeness and "Americana flow rejected. Runoff coefficients used to calculate total event runoff + Sampled runoff AS-6 - No grabs or composites rollected que to low flow. Values. Date 2/12/24 even umi

Reviewed by

Monica Love Approved by Date

Storm Runoff Estimates and Trigger Volumes

- Step 1. Enter runoff coefficients in yellow cells.
- Step 2. Enter expected precipitation depth (in) in blue cell.

Step 3. Read trigger volumes (**bold**) in green cells.

Expected Precipitation Depth = 0.11 Aliquots per Sample = 17

		Using RC cal	Using RC calculated from flow data					
Site	Area		Expected	Trigger				
	(ac)	RC	Vol (ft ³)	Vol (ft ³)				
Lucky	105	0.157	6582.5	387				
Whitewater	498	0.069	13621.3	801				
Main	79	0.246	7760.0	456				
Main Alt	60	0.200	4791.6	282				
Americana	875	0.144	50311.8	2960				
AS_6	204	0.046	3747.0	220				
State	34	0.160	2172.2	128				

Notes:

Calculated RC = Average (precip (ft) / [volume (ft^3) x area (ft^2)])

Where precip (ft) is the measured amount from local rain guage, and volume (ft³) is the measured discharge, and area (ft²) is the watershed area

Expected volume (ft^3) = RC x expected precip (ft) x area (ft^2)

Attachment B: Storm Event Hydrographs

Time (10/10/23 - 10/11/23)

(cfs)

Flow

Whitewater Hydrograph

Americana Hydrograph

>

Grab Sample

Attachment C: Field Forms

Set Up/ Shut Down Form – HACH (Lucky, Main, AS_6)

TATION: May					
SET UP					
Personnel: KCIST	Time	Level (in)	Flow (cfs)	Velocity (fps)	Battery (V)
	10:51	7.02	0.0	0.0	13.41V
Date/Time On-Site: 10/10/23 1042					
	Ena	ble Condition or	Velocity Cutoff:	3.02	
			Deadband:	1.0"	
			Trigger Volume:	2895 9	al
Set flowmeter program and sampler progr Set logging interval to 1 minute	ram parameters				
Set flowmeter program and sampler progr Set logging interval to 1 minute Start flowmeter program and sampler program Verify running Comments:	ram parameters gram				
Set flowmeter program and sampler progr Set logging interval to 1 minute Start flowmeter program and sampler program Verify running Comments:	Time	l (in) Flow (c	fs) Velocity	(fps) Total (cl	f) Battery (V
Set flowmeter program and sampler progr Set logging interval to 1 minute Start flowmeter program and sampler program Verify running Comments: SHUT DOWN Personnel: <u>C. ST</u>	Time Leve	I (in) Flow (c	fs) Velocity 0, 15	(fps) Total (c	f) Battery (V
Set flowmeter program and sampler progr Set logging interval to 1 minute Start flowmeter program and sampler program Verify running Comments: SHUT DOWN Personnel: <u>C. ST</u>	Time Leve	I (in) Flow (c 5 10-72 H D-74 ed to: Rugge	fs) Velocity 0,15 0,27	(fps) Total (c	f) Battery (V
Set flowmeter program and sampler progr Set logging interval to 1 minute Start flowmeter program and sampler program Verify running Comments: SHUT DOWN Personnel: L.C., ST Date/Time	Time Leve	I (in) Flow (c 5 10 - 72 A Dott ed to: Rugge	fs) Velocity 0,15 0,37	(fps) Total (cl	f) Battery (V
Set flowmeter program and sampler progr Set logging interval to 1 minute Start flowmeter program and sampler pro Verify running Comments: SHUT DOWN Personnel: <u>KC</u> , ST Date/Time On-Site: <u>HOHORS MODE KC</u>	ram parameters gram I 108 Leve 1108 2-1 Download	ed to:	fs) Velocity 0.15 0.27	(fps) Total (c	f) Battery (V
Set flowmeter program and sampler progr Set logging interval to 1 minute Start flowmeter program and sampler program Verify running Comments: SHUT DOWN Personnel: <u>LC, ST</u> Date/Time On-Site: <u>10/10/13-0907-</u> KC	ram parameters gram Time Leve 1108 2.1 Download	I (in) Flow (c 5 10 - 72 A Dett ed to: Rugge	fs) Velocity 0,15 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27	(fps) Total (cl	F) Battery (\ 12.7
Set flowmeter program and sampler progr Set logging interval to 1 minute Start flowmeter program and sampler program Verify running Comments: SHUT DOWN Personnel: <u>SHUT DOWN</u> Personnel: <u>SHUT DOWN</u> Date/Time On-Site: <u>10/10/13-09107-KC</u>	ram parameters gram I 108 2.1 Download	ed to:	rfs) Velocity (0,15 0-37 0-37 0-37 0-37 0-37 0-37 0-37 0-37	(fps) Total (cl	f) Battery (\ 12.1
Set flowmeter program and sampler progr Set logging interval to 1 minute Start flowmeter program and sampler program Verify running Comments: SHUT DOWN Personnel: KC, ST Date/Time On-Site: 10/10/13-0907-KC If flow monitoring is complete: Halt program on flowmeter Download flowmeter data	ram parameters gram I 108 2-1 Download	I (in) Flow (c 5 - 7 - ed to: Rugge If continuing to Replace Reset to	ts) Velocity 0,15 0,15 0,37 0,27 0,27 0,15 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27	(fps) Total (cf	f) Battery (\ 12.1
Set flowmeter program and sampler progr Set logging interval to 1 minute Start flowmeter program and sampler program Verify running Comments: SHUT DOWN Personnel: KC, ST Date/Time On-Site: 10/01/3-0107-KC If flow monitoring is complete: Halt program on flowmeter Download flowmeter data Remove flowmeter battery	ram parameters gram Time Leve 1108 2-1 Download	I (in) Flow (c 5 10 - 72 ed to: If continuing t Replace Reset k Change	ts) Velocity 0, 15 0, 10	(fps) Total (cf ry 15 minutes 0.02 fps	f) Battery (V
Set flowmeter program and sampler progr Set logging interval to 1 minute Start flowmeter program and sampler program Verify running Comments: SHUT DOWN Personnel: KC, ST Date/Time On-Site: 10/1012-000-KC If flow monitoring is complete: Halt program on flowmeter Download flowmeter data Remove flowmeter battery	ram parameters gram <u>Time Leve</u> 1108 2.1 Download	I (in) Flow (c 5 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 -	So monitor flow: flowmeter batter or velocity cutoff to or ogram	(fps) Total (cf ry 15 minutes 0.02 fps	f) Battery (V

Comments:

6

Composite Sample Collection

STATION: Personnel: 1/C

Date/Time On-Site: 10/11/2.3

Bottle

 A Halt sampler program

 Put lid on sample bottle; label sample bottle

 Sample ID:
 230/0 ++ + 03 -WC

 Approx Sample Volume (mL):
 5000 m

 Clarity (ex. Clear, Cloudy, Silty):
 Clarity

 Color (ex. Clear, Gray, Tan, Brown, Black):
 MMM

 QA/QC Sample ID:
 -103

		Subsamp	ole Information	1	
Trigger #	Date/Time	Error Message/ Subsample Result	Trigger #	Date/Time	Error Message/ Subsample Result
1	10/10/23 1700	Sucressful	13		
2	10/10/23 1710		14		
3	10/10/23 1720		15		
4	10/10/23/732		16		
5	10/10/231751		17		
6	10/10/23 1 831		18		
7	10/11/23 0823		19		
8	10/1/130906		20		
9			21		
10			22		
11			23		
12			24		

Comments:

If sampling is complete:

- D Power off sampler, if separate from flowmeter
- Keep flowmeter running
- Add ice to sample transport cooler

If continuing sampling (sample bottle change-out):

- Keep flowmeter running
- □ Install new 15L bottle, add ice
- □ Restart program from beginning

Date/Time Restarted: _____

Verify running

	Liquid Height vs. Approximate Sample Volume Conversion Chart								
Liquid	Sample	Liquid	Sample	Liquid	Sample	Liquid	Sample	Liquid	Sample
Height	Volume	Height	Volume	Height	Volume	Height	Volume	Height	Volume
0.5"	400 mL	3.0"	3500 mL	5.5"	7250 mL	8.0"	11000 mL	10.5"	14750 mL
1.0"	800 mL	3.5"	4250 mL	6.0"	8000 mL	8.5"	11750 mL	11.0"	15500 mL
1.5"	1400 mL	4.0"	5000 mL/	6.5"	8750 mL	9.0"	12500 mL	11.5"	16250 mL
2.0"	2000 mL	4.5"	5750 mL	7.0"	9500 mL	9.5"	13250 mL	After 12"	1" = 1500 mL
2.5"	2750 mL	5.0"	6500 mL	7.5"	10250 mL	10.0"	14000 mL	Lab min	8,000 mL

Grab Sample Data Form

STATION: cho Personnel:

Date/Time On-Site: 10/10/23 1813 pm

l

Flow Meter Current Status								
Time	Level (in)	Flow (cfs)	Velocity (fps)	Battery (V)	Flow Start (date/time)	Rainfall (in)		
1819	Basen	Hallon	LAM .	12.9	10/1/23 17:00			
ţ	2.23	7.35	0.09					

Grab Information										
	Sample ID		Date	Time	Labeled?					
Site E.Coli	231010-03	-WG	10/10/23	1829	X					
Field Duplicate E.Coli	23 1010-03	-101	10/10/23							
Field Blank E.Coli	231010-03	-001	10/10/23							

*Note: time on bottle for QC samples is 1200

	Field Parameters								
Meter number	Time	Temp (C)	D.O. (mg/L)	рН (S.U.)	SpCond (uS/cm)				
MPOQ	1830	16.47	7.38	5.66	81.35				

	Sampler Current Status				
First Subsample Date/Time	10/10/23	1700			
Last Subsample Date/Time	10/10/23	1832			
# of Subsamples taken	6				

Comments:

Set Up/ Shut Down Form – ISCO (Whitewater, Americana, State) SET UP

Personnel: KC ST	Time	Level (in)	Flow (cfs)	Velocity (fps)	Battery (V)
Date/Time	1146	1.47	0.06	0.41	\sim
On-site: 10/10/2023 1140					
	E	nable Condition: Hysteresis:	2.G		
	Flo	w Pulse Interval:	400 cf		

<u>On-Site</u>	Flowlink (Refer to PG 411 or PG 412, if needed)
🛛 Replace flowmeter battery, install sampler battery	Direct or Remote; Date/time n/10/23 (150
🔊 Perform decon. cycle	A Retrieve data and review recent flow history
Install 15L sample bottle, with ice	🕰 Change Wireless Power Control to Storm Event
Icave bottle lid at site, in a clean re-sealable plastic bag	A Change Data Storage Rates to 1 minute for Level,
🖾 Set sampler program parameters	Velocity, Total Flow, and Flow Rate
🛱 Check date/time on sampler	🖒 Enable Sampler: On Trigger, and set Sampler Enable
🛱 Verify all cable and tubing connections	equation
🕅 Verify sampler program is running	🕅 Set Sampler Pacing to Flow Paced, and set trigger
	Volume

Comments:

1

ſ

SHUT DOWN						
Personnel: KC,ST	Г	Time	Level (in)	Flow (cfs)	Velocity (fps)	Battery (V)
1		0917	2.34	0.11	0.37	
Date/Time	2000		Downloaded to:	KILGAR	16/15	B
On-Site: <u>10/10165</u>	0902					
	1040	1040	2.06	0.22	0.90	<u> </u>
<u>On-Site</u>	· K	A worth Connected	Flowlink (Refer	to Flowlink Instr	uctions, if needed	d)
Replace flowmet	er battery	HIVERYSLUM	🕺 Direct or	Remote; Date/	time <u>0905</u>	
Remove battery	from sampler	to powery.	Retrieve R	data		
	2	ovi barres	Change \	Nireless Power	Control to Dry We	eather
			Change [Data Storage Rat	tes to 15 minutes	for Level,
			Velocity, To	tal Flow, and Flo	ow Rate	
			Enable Sa	ampler: Never		
Comments:						

THIDATEV Personnel: V

Composite Sample Collection

Date/Time On-Site: 10/11/23

Bottle

of

 Halt sampler program

 Put lid on sample bottle; label sample bottle

 Sample ID:
 -WC

 Approx Sample Volume (mL):

 Clarity (ex. Clear, Cloudy, Silty):

 Color (ex. Clear, Gray, Tan, Brown, Black):

 QA/QC Sample ID:
 -103

		Subsamp	ole Information	1	
Trigger #	Date/Time	Error Message/ Subsample Result	Trigger #	Date/Time	Error Message/ Subsample Result
1	10/11/23 D920	Successful	13		
2	1 0958	1	14		m.
3			15		
4			16		
5			17		
6			18		
7			19		
8			20		
9			21		
10			22		
11			23		
12			24		

Comments:

Sample discarded wat

If sampling is complete:

- D Power off sampler, if separate from flowmeter
- Keep flowmeter running
- Add ice to sample transport cooler

If continuing sampling (sample bottle change-out):

- Keep flowmeter running
- Install new 15L bottle; add ice
- □ Restart program from beginning

Date/Time Restarted: ____

Verify running

			Liquid Height	s. Approxim	ate Sample Volu	ime Conver	sion Chart		
Liquid	Sample	Liquid	Sample	Liguid	Sample	Liquid	Sample	Liquid	Sample
Height	Volume	Height	Volume	Height	Volume	Height	Volume	Height	Volume
0.5"	400 mL	3.0"	3500 mL	5.5"	7250 mL	8.0"	11000 mL	10.5"	14750 mL
1.0"	800 mL	3.5"	4250 mL	6.0"	8000 mL	8.5"	11750 mL	11.0"	15500 mL
1.5"	1400 mL	4.0"	5000 mL	6.5"	8750 mL	9.0"	12500 mL	11.5"	16250 mL
2.0"	2000 mL	4.5"	5750 mL	7.0"	9500 mL	9.5"	13250 mL	After 12"	1" = 1500 mL
2.5"	2750 mL	5.0"	6500 mL	7.5"	10250 mL	10.0"	14000 mL	Lab min	8,000 mL

Grab Sample Data Form

STATION:	white	water								
Personnel:	ZL, C	ò	Date/1	_ Date/Time On-Site: 10/10 23 [85]						
		Flow	Meter Cur	rent Status						
Time	Level (in)	Flow (cfs)	Velocity (fps)	Battery (V)	Flow Start (date/time)	Rainfall (in)				
1851	2.09	QUEELLA	0.81	-	10/10/10 1600	0.0810				
		0,90								
			Grab Inform	nation	,					
		Sample I	D	Date	Time	Labeled?				
Site E.Coli		231010-1	l -MG	10/10/2	3 1904	X				
Field Duplica	ate <i>E.Coli</i>		-101							

*Note: time on bottle for QC samples is 1200

	Field Parameters										
Meter number	Time	Temp (C)	D.O. (mg/L)	рН (S.U.)	SpCond (uS/cm)						
M809	1904	17.17	\$7.65	6.28	195.09						

-001

	Sampler Current Status						
First Subsample Date/Time							
Last Subsample Date/Time							
# of Subsamples taken							

Comments:

@ 1900 No composite samples taken yet. only grabs.

Field Blank E.Coli

(,

)

Revised 210924 TL

.•

Set Up/ Shut Down Form – HACH (Lucky, Main, AS_6)

TATION: Main					
SET UP					
Personnel: KC, ST	Time	Level (in)	Flow (cfs)	Velocity (fps)	Battery (V)
	1230				13.5
Date/Time On-Site: 10/10/23 12.28					
	Ena	ble Condition or	Velocity Cutoff:		
			Deadband:		
 Install batteries on flowmeter and sampler Perform decon. cycle Install 15L sample bottle, with ice Leave bottle lid at site, in a clean re-sealable pla Verify all cable and tubing connections Check date and time on flowmeter and sampler Set flowmeter program and sampler program pa Set logging interval to 1 minute Start flowmeter program and sampler program Verify running Comments: 	flow n no fl stic bag So arameters H	ow in T w meter me read ain for t be read	out for ings given	ed Sway a new ren. Not t. Senti rectly	one targettin

SHUT DOWN

Personnel:	Time	Level (in)	Flow (cfs)	Velocity (fps)	Total (cf)	Battery (V)
Date/Time On-Site:	Do	wnloaded to:				

If flow monitoring is complete:	If continuing to monitor flow:
Halt program on flowmeter	Replace flowmeter battery
Download flowmeter data	Reset logging interval to 15 minutes
Remove flowmeter battery	Change velocity cutoff to 0.02 fps
	□ Start program
	Verify running

Comments:

Composite Sample Collection

STATION:		Bottle o	of
Personnel:	Date/Time On-Site:		
□ Halt sampler program			
Put lid on sample bottle; label sample bottle			
Sample ID:		-WC	
Approx Sample Volume (mL):			
Clarity (ex. Clear, Cloudy, Silty):			
Color (ex. Clear, Gray, Tan, Brown, Black):			
QA/QC Sample ID:		-103	(Time: 1200)

	Subsample Information										
Trigger #	Date/Time	Error Message/ Subsample Result	Trigger #	Date/Time	Error Message/ Subsample Result						
1			13								
2			14								
3			15								
4			16								
5			17								
6			18								
7			19								
8			20								
9			21								
10			22								
11			23								
12			24								

Comments:

If sampling is complete:

- D Power off sampler, if separate from flowmeter
- Keep flowmeter running
- . \Box Add ice to sample transport cooler

If continuing sampling (sample bottle change-out):

- Keep flowmeter running
- □ Install new 15L bottle, add ice
- □ Restart program from beginning

Date/Time Restarted: _____

Verify running

			Liquid Height	vs. Approxim	ate Sample Volu	ume Conve	rsion Chart		
Liquid	Sample	Liquid	Sample	Liquid	Sample	Liquid	Sample	Liquid	Sample
Height	Volume	Height	Volume	Height	Volume	Height	Volume	Height	Volume
0.5"	400 mL	3.0"	3500 mL	5.5"	7250 mL	8.0"	11000 mL	10.5"	14750 mL
1.0"	800 mL	3.5"	4250 mL	6.0"	8000 mL	8.5"	11750 mL	11.0"	15500 mL
1.5"	1400 mL	4.0"	5000 mL	6.5"	8750 mL	9.0"	12500 mL	11.5"	16250 mL
2.0"	2000 mL	4.5"	5750 mL	7.0"	9500 mL	9.5"	13250 mL	After 12"	1" = 1500 mL
2.5"	2750 mL	5.0"	6500 mL	7.5"	10250 mL	10.0"	14000 mL	Lab min	8.000 ml

Set Up/ Shut Down Form – ISCO (Whitewater, Americana, State)

TATION: AMINCAMA					
SET UP					
Personnel: V.C.	Time	Level (in)	Flow (cfs)	Velocity (fps)	Battery (V)
Personnen	D916	3.81	0.12	1.544	11.59
Date/Time On-Site: 10/10/23 124	1				
	E	hable Condition:	501		
	Flox	Hysteresis:	1.0 Dated C		
		v ruise interval.	Centro a		
Perform decon. cycle Install 15L sample bottle, with i Leave bottle lid at site, in a clear Set sampler program paramete Check date/time on sampler Verify all cable and tubing conn Verify sampler program is runn	ce In re-sealable plastic bag rs lections ing	A Retrieve Change V Velocity, To Velocity, To Change I Velocity, To Sequation Set Samp volume	data and review Wireless Power Data Storage Ra tal Flow, and Flo ampler: On Trig	v recent flow hist Control to Storm tes to 1 minute fo ow Rate ger, and set Samp ow Paced, and se	Event Event or Level, pler Enable et trigger
"Replace Pump	tubing "Warn	ing when	program	Statutes. M	ollowed
Error messa	je went away.	PUMPA " tube	-	eset pon	p court
SHUT DOWN					
Personnel KC St	Time	Level (in)	Flow (cfs)	Velocity (fps)	Battery (V)
	1151	4.34	0.9	1.593	12,13
Date/Time		Downloaded to:	USB		

<u>On-Site</u>	Flowlink (Refer to Flowlink Instructions, if needed)
Replace flowmeter battery	Direct or Remote; Date/time 10/11/23 1203
Remove battery from sampler	🖾 Retrieve data
	🖾 Change Wireless Power Control to Dry Weather
	🙀 Change Data Storage Rates to 15 minutes for Level,
	Velocity, Total Flow, and Flow Rate
	😡 Enable Sampler: Never
Comments:	

1151

23

Comments:

On-Site: 10

STATION: cana Personnel:

Composite Sample Collection

Date/Time On-Site: 0/10/23

of

Bottle

Halt sampler program			à
Put lid on sample bottle; label sample bottle			
Sample ID:	23011-14	-WC	
Approx Sample Volume (mL):	5750 ml		
Clarity (ex. Clear, Cloudy, Silty):	Silty		
Color (ex. Clear, Gray, Tan, Brown, Black):	Brown		
QA/QC Sample ID:		-103	(Time: 1200)

Subsample Information Trigger Date/Time Error Message/ Trigger Date/Time Error Message/ # Subsample Result # Subsample Result 10/10/23 17:13 1 13 A POR 2 14 1736 3 15 1804 4 16 1839 5 17 1926 6 10/11 839 18 7 906 19 8 942 20 9 21 1020 10 22 11 03 11 23 1150 12 24

Comments:

If sampling is complete:

- Diver off sampler, if separate from flowmeter
- 🖄 Keep flowmeter running
- Add ice to sample transport cooler

- If continuing sampling (sample bottle change-out):
 - Keep flowmeter running
 - □ Install new 15L bottle; add ice
 - □ Restart program from beginning
 - Date/Time Restarted: _____
 - Verify running

	Liquid Height vs. Approximate Sample Volume Conversion Chart									
Liquid	Sample	Liquid	Sample	Liquid	Sample	Liquid	Sample	Liquid	Sample	
Height	Volume	Height	Volume	Height	Volume	Height	Volume	Height	Volume	
0.5"	400 mL	3.0"	3500 mL	5.5"	7250 mL	8.0"	11000 mL	10.5"	14750 mL	
1.0"	800 mL	3.5"	4250 mL	6.0"	8000 mL	8.5"	11750 mL	11.0"	15500 mL	
1.5"	1400 mL	4.0"	5000 mL	6.5"	8750 mL	9.0"	12500 mL	11.5"	16250 mL	
2.0"	2000 mL	(4.5"	5750 mD	7.0"	9500 mL	9.5"	13250 mL	After 12"	1" = 1500 mL	
2.5"	2750 mL	5.0"	6500 mL	7.5"	10250 mL	10.0"	14000 mL	Lab min	8,000 mL	

Grab Sample Data Form

STATION: Personnel:	Ameri KC 5	cena	Date/Tii	me On-Site:	01023	19:15			
Flow Meter Current Status									
Time	Level (in)	Flow (cfs)	Velocity (fps)	Battery (∨)	Flow Start (date/time)	Rainfall (in)			
1817	55	1.41	1.768	12.04					

Grab Information								
	Sample ID	Date	Time	Labeled?				
Site E.Coli	23/010-14 -M	G 10/10/23	1823	X				
Field Duplicate E.Coli	-10	91						
Field Blank E.Coli	-00	1						

*Note: time on bottle for QC samples is 1200

Field Parameters							
Meter number	Time	Temp (C)	D.O. (mg/L)	рН (S.U.)	SpCond (uS/cm)		
MPII	1826	16.78	8.40	6.53	247.08		

	Sampler Current Status						
First Subsample Date/Time	10/10/23 17/3						
Last Subsample Date/Time	10/10/23 1804						
# of Subsamples taken	3						

Comments:

.

C-35

Set Up/ Shut Down Form – HACH (Lucky, Main, AS_6)

TATION: AS-6		_				
SET UP						
Personnel: KC. ST	Tim	e Le	/el (in)	Flow (cfs)	Velocity (fps)	Battery (V)
	1357	. Б.	D	0.0	D.17	12.5
Date/Time					010	
On-Site: 10110125 15572		Enable Co	dition or 1	Velocity Cutoff	10 07	
		Linable Co		Deadband	UNC	
			1	rigger Volume	22 (5	
Check date and time on flowmeter and s Set flowmeter program and sampler pro Set logging interval to 1 minute Start flowmeter program and sampler pr Verify running Comments: USING	sampler gram parameters rogram NL FOV	Sampl	e Vo	lume		
Ver ST	Time	Level (in)	Flow (c	fs) Velocity	(fps) Total	(cf) Battery (V)
Personnel:	10.0%	0.0423	00	<u> </u>	190	(7 2
Date/Time	Dow	nloaded to:	Rivia	10.51	1 10	14.0
On-Site: 10/10/23 0/60		inouucu to.	Jucky			
If flow monitoring is complete: Halt program on flowmeter Download flowmeter data Remove flowmeter battery		lfc	Image: continuing to the second se	o monitor flow: flowmeter batt ogging interval to velocity cutoff t ogram unning	ery o 15 minutes o 0.02 fps	
comments: No composite	or grab	Sampl	ls Su	ubmitte	d due to	low flor

Composite Sample Collection

STATION: _

Personnel: _____

Date/Time On-Site:

Bottle _____ of _____

Halt sampler program		
Put lid on sample bottle; label sample bottle		
Sample ID:	-WC	
Approx Sample Volume (mL):		
Clarity (ex. Clear, Cloudy, Silty):		
Color (ex. Clear, Gray, Tan, Brown, Black):		
OA/QC Sample ID:	-103	(Time: 1200)

Subsample Information								
Trigger #	Date/Time	Error Message/ Subsample Result	Trigger #	Date/Time	Error Message/ Subsample Result			
1			13					
2			14					
3			15					
4			16					
5			17					
6			18					
7			19					
8			20					
9			21					
10			22					
11			23					
12			24					

Comments:

If sampling is complete: If continuing sampling (sample bottle change-out): Power off sampler, if separate from flowmeter Keep flowmeter running Keep flowmeter running Install new 15L bottle, add ice Add ice to sample transport cooler Restart program from beginning Date/Time Restarted: Verify running

	Liquid Height vs. Approximate Sample Volume Conversion Chart									
Liquid	Sample	Liquid	Sample	Liquid	Sample	Liquid	Sample	Liquid	Sample	
Height	Volume	Height	Volume	Height	Volume	Height	Volume	Height	Volume	
0.5"	400 mL	3.0"	3500 mL	5.5"	7250 mL	8.0"	11000 mL	10.5"	14750 mL	
1.0"	800 mL	3.5"	4250 mL	6.0"	8000 mL	8.5"	11750 mL	11.0"	15500 mL	
1.5"	1400 mL	4.0"	5000 mL	6.5"	8750 mL	9.0"	12500 mL	11.5"	16250 mL	
2.0"	2000 mL	4.5"	5750 mL	7.0"	9500 mL	9.5"	13250 mL	After 12"	1" = 1500 mL	
2.5"	2750 mL	5.0"	6500 mL	7.5"	10250 mL	10.0"	14000 mL	Lab min	8,000 mL	

Attachment D: Storm Event Analytical Reports

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Samples in this Report

Lab ID	Sample	Sample Description	Matrix	Qualifiers	Date Sampled	Date Received
AC00321-01	ACST1B	231010-03-WG	Water		10/10/2023	10/10/2023
AC00321-02	ACST1B	231010-11-WG	Water		10/10/2023	10/10/2023
AC00321-03	ACST1B	231010-14-WG	Water		10/10/2023	10/10/2023

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Analysis Report

Location:	ACST1	В				Location Description:	231010-0	3-WG		
Date/Time Collected	: 10/10/2	2023 18:29								
Lab Number:	AC003	21-01				Sample Collector:	C.S			
Sample Type:	Grab					Sample Matrix:	Water			
				Adjusted	Method	Analysis Method			Analyst	
Analyte Name	Batch	Result	Units	MDL *	MDL	Reference	Prepared	Analyzed	Initials	Qualifier
Microbiology										
E. Coli	B234049	2720.0 MI	PN/100 mL	100.0	1.0	IDEXX - Colilert	10/10/23 20:25	10/11/23 20:25	LRF	D
Wet Chemistry										
Chlorine Screen	B234050	Absent				SM 4500-CL G-2000 mod	10/10/23	10/10/23 20:11	JAL	

* The reported adjusted "MDL" is sample-specific. The analysis MDL as defined by 40 CFR pt 136 App.B. was corrected for dilution, dry weight, or method-defined ML.

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Analysis Report

Location:	ACST1	В				Location Description:	231010-1	1-WG		
Date/Time Collected	d: 10/10/2	2023 19:04								
Lab Number:	AC003	21-02				Sample Collector:	C.S			
Sample Type:	Grab					Sample Matrix:	Water			
Analyte Name	Batch	Result	Units	Adjusted MDL *	Method MDL	Analysis Method Reference	Prepared	Analyzed	Analyst Initials	Qualifier
Microbiology E. Coli	B234049	1990.0 M	PN/100 mL	100.0	1.0	IDEXX - Colilert	10/10/23 20:25	10/11/23 20:25	LRF	D
Wet Chemistry Chlorine Screen	B234050	Absent				SM 4500-CL G-2000 mod	10/10/23	10/10/23 20:11	JAL	

* The reported adjusted "MDL" is sample-specific. The analysis MDL as defined by 40 CFR pt 136 App.B. was corrected for dilution, dry weight, or method-defined ML.

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Analysis Report

Location:	ACST1	В				Location Description:	231010-1	4-WG		
Date/Time Collected	: 10/10/2	2023 18:23								
Lab Number:	AC003	21-03				Sample Collector:	K.C			
Sample Type:	Grab					Sample Matrix:	Water			
Analyte Name	Batch	Result	Units	Adjusted MDL *	Method MDL	Analysis Method Reference	Prepared	Analyzed	Analyst Initials	Qualifier
Microbiology E. Coli	B234049	129.6 M	PN/100 mL	1.0	1.0	IDEXX - Colilert	10/10/23 20:25	10/11/23 20:25	LRF	
Wet Chemistry Chlorine Screen	B234050	Absent				SM 4500-CL G-2000 mod	10/10/23	10/10/23 20:11	JAL	

* The reported adjusted "MDL" is sample-specific. The analysis MDL as defined by 40 CFR pt 136 App.B. was corrected for dilution, dry weight, or method-defined ML.

\$

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Quality Control Report

Analyte Name	Method Blank	Units	% Recovery	Recovery Limits	RPD	RPD Limit	Analyzed	Analyst Initials	Qualifier
Microbiology									
Batch: B234049 Blank (B234049-BLK1)	Absent						10/11/2023	IRE	
	Absent						10/11/2023		
LCS (B234049-BS1) E. Coli				Present			10/11/2023	LRF	
Duplicate (B234049-DUP2) E. Coli	Source ID: AC00)321-01RE	:1		Pass	128	10/11/2023	LRF	

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Notes and Definitions

Item	Definition
D	Data reported from a dilution

Method Reference Acronyms

Colilert	Colilert, IDEXX Laboratories, Inc.
EPA	Manual of Methods for Chemical Analysis of Water and Wastes, USEPA
GS	USGS Techniques of Water-Resources Investigations
HH	Hach Spectrophotometer Procedures Manual
SM	Standard Methods for the Examination of Water and Wastewater
SW	Test methods for Evaluating Solid Waste, SW-846

for JFK

Janet Finegan-Kelly Water Quality Laboratory Manager

Stephen Quintero or Azubike Emenari QA/QC Coordinator

The contents of this report apply to the sample(s) analyzed in accordance with the Chain of Custody document. No duplication of this report is allowed, except in its entirety

Ada Co	unty Hig	jhway [District]											
Attn: Steven Turner 3775 Adams StreetGarden City, Idaho 83714–6418Tel. (208) 387–6269Fax (208) 387–6391Purchase Order:Project:Sampler(s):Kvisten ChisholmSkulen TwrneyChad Schwend $tri Zuly Lapa$		sholm rex rend pa			Matrix	Ту			000		51.2		ite - EPA 365.1	PD - EPA 200.8 Pb. Zn - EPA 200.8	PA 245.2	(X Colilert	24 180.1 PA 200.7	PA 353.2	0 NH ₃ - D			
Lab#	Begin Date	End Date	Begin Time	End Time	Sample Id	entification	Sampler Initi	Water	Grab	Composit <i>e</i>	BOD5 - SM 5	COD - Hach 8	TDS - SM 254	TKN - EPA 3	TP - EPA 200	Orthophospha Totol A. C.	<u>I vial As, Ca,</u> Diss. Cd Cu. I	Total Hg - El	E. Coli - IDE)	<u>Hurbidity - EF</u> Hardness - E	NO ₃ +NO ₂ - E	NH ₃ - SM 450
-01	iblinhis		1829		231010-03-	WG	(.5	X	X								_		X			ſ
-0 ₂			1904		231010 - 11 -	ing	CS_	X	Х										x			١
-03			1823		231010 - 14 - W	UG	KC	×	X									>	×			1
Relinquis	hed by (s	ign)	Date Tran	& Time	Rece	eived by (sign)				Co	omn	nents	s/Sp	ecia	al In:	stru	ctio	ns:				
Krist Ch	lasta L	· 	10/10/23	200	B Nait	10.10	23	4003														
coc_wql-pi					I										Ac	20	02		C-45	W	¥24	

Report Date: 12/04/2023 12:04

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Samples in this Report

Lab ID	Sample	Sample Description	Matrix	Qualifiers	Date Sampled	Date Received
AC00322-01	ACST1C	231010-03-WC	Water		10/11/2023	10/11/2023
Comme	nts:					
	Low volume. No	dissolved parameters were collected.				
AC00322-02	ACST1C	231010-14-WC	Water		10/11/2023	10/11/2023

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Analysis Report

Location:	ACST1C	Location Description:	231010-03-WC
Date/Time Collected:	10/10/2023 17:00 - 10/11/2023 09:06		
Lab Number:	AC00322-01	Sample Collector:	K.C
Sample Type:	Composite	Sample Matrix:	Water

				Adjusted Method		Analysis Method		Analyst				
Analyte Name	Batch	Result	Units	MDL *	MDL	Reference	Prepared	Analyzed	Initials	Qualifier		
Wet Chemistry												
Ammonia, as N	B234335	0.336	mg/L	0.0350	0.0350	SM 4500-NH3 D-2011	10/28/23	10/28/23 12:02	MEC			
BOD5	B234067	17.5	mg/L	2.00	2.00	SM 5210 B-2016	10/12/23	10/17/23 9:13	RKT			
COD	B234066	83.0	mg/L	7.00	7.00	HH 8000, Standard Method 5220 D	10/12/23	10/12/23 9:31	JAL			
TKN	B234085	1.97	mg/L	0.200	0.200	EPA 351.2, 10-107-06-2-M (Equivalent)	10/13/23	10/13/23 18:35	EDM			
Total Dissolved Solids	B234048	126	mg/L	20.0	20.0	SM 2540 C-2015	10/12/23	10/13/23 11:02	RKT			
Total Suspended Solids	B234076	17.4	mg/L	0.900	0.900	SM 2540 D-2015	10/12/23	10/12/23 9:41	RKT			
Turbidity	B234051	19.6	NTU	0.3	0.3	EPA 180.1, Rev. 2.0 (1993)	10/11/23	10/11/23 13:52	KMR			
Total Metals												
Mercury	B234059	0.0118	ug/L	0.0100	0.0100	EPA 245.1	10/12/23	10/13/23 8:03	SAS			
Arsenic	B234105	2.6	ug/L	0.070	0.070	EPA 200.8	10/18/23	10/19/23 15:37	DMW			
Cadmium	B234105	0.035	ug/L	0.010	0.010	EPA 200.8	10/18/23	10/19/23 15:37	DMW			
Calcium	B234177	15.8	mg/L	0.0400	0.0400	EPA 200.7	10/19/23	10/20/23 10:04	AMO			
Lead	B234105	0.65	ug/L	0.010	0.010	EPA 200.8	10/18/23	10/19/23 15:37	' DMW			
Magnesium	B234177	1850	ug/L	80.0	80.0	EPA 200.7	10/19/23	10/20/23 10:04	AMO			
Phosphorus as P	B234177	0.485	mg/L	0.0120	0.0120	EPA 200.7	10/19/23	10/20/23 10:04	AMO			
Hardness	B234177	47.2	mg/L	0.100	0.100	SM 2340 B-2011	10/19/23	10/20/23 10:04	AMO			

* The reported adjusted "MDL" is sample-specific. The analysis MDL as defined by 40 CFR pt 136 App.B. was corrected for dilution, dry weight, or method-defined ML.

Analysis Report

	A 11 . (1 B.R. (1	A A A A A A A A A A A A A A A A A A A	A
Sample Type:	Composite	Sample Matrix:	Water
Lab Number:	AC00322-02	Sample Collector:	K.C
Date/Time Collected:	10/10/2023 17:13 - 10/11/2023 11:50		
Location:	ACST1C	Location Description:	231010-14-WC

	Ad		Adjusted	Adjusted Method Analysis Method				Analyst		
Analyte Name	Batch	Result	Units	MDL *	MDL	Reference	Prepared	Analyzed	Initials	Qualifier
Wet Chemistry										
Ammonia, as N	B234335	0.353	mg/L	0.0350	0.0350	SM 4500-NH3 D-2011	10/28/23	10/28/23 11:59	MEC	
BOD5	B234067	19.7	mg/L	2.00	2.00	SM 5210 B-2016	10/12/23	10/17/23 9:06	RKT	
COD	B234066	77.0	mg/L	7.00	7.00	HH 8000, Standard Method 5220 D	10/12/23	10/12/23 9:31	JAL	
Nitrate-Nitrite, as N	B234143	0.930	mg/L	0.0250	0.0250	EPA 353.2, Rev. 2.0 (1993)	10/17/23	10/17/23 15:14	BAK	
TKN	B234085	1.44	mg/L	0.200	0.200	EPA 351.2, 10-107-06-2-M (Equivalent)	10/13/23	10/13/23 18:36	EDM	
Total Dissolved Solids	B234048	236	mg/L	20.0	20.0	SM 2540 C-2015	10/12/23	10/13/23 11:03	RKT	
Total Suspended Solids	B234076	23.6	mg/L	0.900	0.900	SM 2540 D-2015	10/12/23	10/12/23 9:42	RKT	
Turbidity	B234051	33.6	NTU	0.3	0.3	EPA 180.1, Rev. 2.0 (1993)	10/11/23	10/11/23 14:00	KMR	
Dissolved Wet Ch	nemistry									
Orthophosphate, as P	B234046	0.169	mg/L	3.00E-3	3.00E-3	EPA 365.1, Rev. 2.0 (1993)	10/11/23	10/11/23 14:01	JAL	
Total Metals										
Mercury	B234059	<0.0100	ug/L	0.0100	0.0100	EPA 245.1	10/12/23	10/13/23 7:14	SAS	U
Arsenic	B234105	5.5	ug/L	0.070	0.070	EPA 200.8	10/18/23	10/19/23 15:46	DMW	
Cadmium	B234105	0.072	ug/L	0.010	0.010	EPA 200.8	10/18/23	10/19/23 15:46	DMW	
Calcium	B234177	<0.0400	mg/L	0.0400	0.0400	EPA 200.7	10/19/23	10/20/23 10:09	AMO	U
Lead	B234105	2.4	ug/L	0.010	0.010	EPA 200.8	10/18/23	10/19/23 15:46	DMW	
Magnesium	B234177	<80.0	ug/L	80.0	80.0	EPA 200.7	10/19/23	10/20/23 10:09	AMO	U
Phosphorus as P	B234799	0.308	mg/L	0.0120	0.0120	EPA 200.7	11/30/23	12/1/23 10:09	AMO	
Hardness	B234177	<0.100	mg/L	0.100	0.100	SM 2340 B-2011	10/19/23	10/20/23 10:09	AMO	U
Dissolved Metals										
Cadmium	B233966	0.021	ug/L	0.010	0.010	EPA 200.8	10/13/23	10/13/23 17:50	DMW	
Copper	B233966	8.2	ug/L	0.15	0.15	EPA 200.8	10/13/23	10/13/23 17:50	DMW	
Lead	B233966	0.095	ug/L	9.00E-3	9.00E-3	EPA 200.8	10/13/23	10/13/23 17:50	DMW	
Zinc	B233966	22.0	ug/L	0.50	0.50	EPA 200.8	10/13/23	10/13/23 17:50	DMW	

* The reported adjusted "MDL" is sample-specific. The analysis MDL as defined by 40 CFR pt 136 App.B. was corrected for dilution, dry weight, or method-defined ML.

Quality Control Report

Analyte Name	Method Blank Uni		% Recovery	Recovery Limits	RPD	RPD Limit	Analyzed	Analyst Initials	Qualifier
Wet Chemistry									
Batch: B234048 Blank (B234048-BLK1) Total Dissolved Solids	<20	mg/L					10/13/2023	RKT	U
LCS (B234048-BS1) Total Dissolved Solids			95.4	90-110			10/13/2023	RKT	
Duplicate (B234048-DUP1) Total Dissolved Solids	Source ID: RW0	0036-02			0.322	10	10/13/2023	RKT	
Batch: B234051 Blank (B234051-BLK1) Turbidity	<0.3	NTU					10/11/2023	KMR	U
LCS (B234051-BS1) Turbidity			102	90-110			10/11/2023	KMR	
Duplicate (B234051-DUP1) Turbidity	Source ID: AC00	0322-01			0.340	25	10/11/2023	KMR	
Batch: B234066 Blank (B234066-BLK1) COD	<7	mg/L					10/12/2023	JAL	U
LCS (B234066-BS1) COD			99.3	90-110			10/12/2023	JAL	
Duplicate (B234066-DUP1) COD	Source ID: RW0	0036-05			2.44	10	10/12/2023	JAL	
Duplicate (B234066-DUP2) COD	Source ID: AC0	0322-01			1.20	10	10/12/2023	JAL	
Batch: B234067 Blank (B234067-BLK1) BOD5	<2	mg/L					10/17/2023	RKT	U
LCS (B234067-BS1) BOD5			102	84.6-115.4			10/17/2023	RKT	
LCS (B234067-BS2) BOD5			107	84.6-115.4			10/17/2023	RKT	
Duplicate (B234067-DUP1) BOD5	Source ID: BB0	3290-02			1.56	30	10/17/2023	RKT	D

Quality Control Report

Analyte Name	Method Blank	Units	% Recoverv	Recovery Limits	RPD	RPD Limit	Analvzed	Analyst Initials	Qualifier
Wet Chemistry (Contin	ued)								
Batch: B234076	aday								
Blank (B234076-BLK1) Total Suspended Solids	<0.9	mg/L					10/12/2023	RKT	U
LCS (B234076-BS1) Total Suspended Solids			97.2	90-110			10/12/2023	RKT	
Duplicate (B234076-DUP1) Total Suspended Solids	Source ID: BB03	3292-01			1.65	20	10/12/2023	RKT	
Duplicate (B234076-DUP2) Total Suspended Solids	Source ID: ST00	053-02			1.26	20	10/12/2023	RKT	
Batch: B234085 Blank (B234085-BLK1) TKN	<0.2	mg/L					10/13/2023	EDM	U
LCS (B234085-BS1) TKN			97.9	80-120			10/13/2023	EDM	
Duplicate (B234085-DUP1) TKN	Source ID: WB0	2755-06			1.60	20	10/13/2023	EDM	D
Matrix Spike (B234085-MS1) TKN	Source ID: WE	302755-06	89.1	80-120			10/13/2023	EDM	D
Matrix Spike Dup (B234085-N TKN	ISD1) Source	ID: WB027	55-06 89.8	80-120	0.285	20	10/13/2023	EDM	D
Batch: B234143 Blank (B234143-BLK1) Nitrate-Nitrite, as N	<0.025	mg/L					10/17/2023	BAK	U
Blank (B234143-BLK2) Nitrate-Nitrite, as N	<0.025	mg/L					10/17/2023	BAK	U
LCS (B234143-BS1) Nitrate-Nitrite, as N			97.8	90-110			10/17/2023	BAK	
LCS (B234143-BS2) Nitrate-Nitrite, as N			96.0	90-110			10/17/2023	BAK	
Duplicate (B234143-DUP1) Nitrate-Nitrite, as N	Source ID: BB03	3281-02			0.457	10	10/17/2023	BAK	
Duplicate (B234143-DUP2) Nitrate-Nitrite, as N	Source ID: RW0	00037-01			0.344	10	10/17/2023	BAK	
Duplicate (B234143-DUP3) Nitrate-Nitrite, as N	Source ID: WBC	2749-07			0.195	10	10/17/2023	BAK	D
Matrix Spike (B234143-MS1) Nitrate-Nitrite, as N	Source ID: BB	03281-02	97.7	90-110			10/17/2023	BAK	
Matrix Spike (B234143-MS2) Nitrate-Nitrite, as N	Source ID: RV	V00037-01	91.7	90-110			10/17/2023	BAK	
Matrix Spike (B234143-MS3) Nitrate-Nitrite, as N	Source ID: WE	302749-07	92.9	90-110			10/17/2023	BAK	D

The contents of this report apply to the sample(s) analyzed in accordance with the Chain of Custody document. No duplication of this report is allowed, except in its entirety

Quality Control Report (Continued)

Analyte Name	Method Blank	Units	% Recoverv	Recovery Limits	RPD	RPD Limit	Analyzed	Analyst Initials	Qualifier
Wet Chemistry (Continued)									
Batch: B234143 (Continued)									
Matrix Spike Dup (B234143-MSD1) Nitrate-Nitrite, as N	Source	ID: BB03281	1-02 95.1	90-110	1.49	10	10/17/2023	BAK	
Matrix Spike Dup (B234143-MSD2) Nitrate-Nitrite, as N	Source	ID: RW0003	37-01 91.9	90-110	0.117	10	10/17/2023	BAK	
Matrix Spike Dup (B234143-MSD3) Nitrate-Nitrite, as N	Source	ID: WB0274	9-07 91.6	90-110	0.567	10	10/17/2023	BAK	D
Batch: B234335 Blank (B234335-BLK1) Ammonia, as N	<0.035	mg/L					10/28/2023	MEC	U
LCS (B234335-BS1) Ammonia, as N			104	90-110			10/28/2023	MEC	
Duplicate (B234335-DUP1) Source Ammonia, as N	e ID: BB03	3292-01			0.0151	10	10/28/2023	MEC	
Duplicate (B234335-DUP2) Source Ammonia, as N	e ID: WBC	2765-06			1.26	10	10/28/2023	MEC	
Matrix Spike (B234335-MS1) Sou Ammonia, as N	rce ID: BB	03292-01	103	80-120			10/28/2023	MEC	
Matrix Spike (B234335-MS2) Sou Ammonia, as N	Irce ID: WE	302765-06	108	80-120			10/28/2023	MEC	
Matrix Spike Dup (B234335-MSD1) Ammonia, as N	Source	ID: BB0329	2-01 102	80-120	0.611	10	10/28/2023	MEC	
Matrix Spike Dup (B234335-MSD2) Ammonia, as N	Source	ID: WB0276	65-06 109	80-120	0.658	10	10/28/2023	MEC	

Quality Control Report

Analyte Name	Method Blank	Units	% Recovery	Recovery Limits	RPD	RPD Limit	Analyzed	Analyst Initials	Qualifier
Dissolved Wet Chemis	try								
Batch: B234046	-								
Blank (B234046-BLK1) Orthophosphate, as P	<0.003	mg/L					10/11/2023	JAL	U
LCS (B234046-BS1) Orthophosphate, as P			98.8	90-110			10/11/2023	JAL	
Duplicate (B234046-DUP1) Orthophosphate, as P	Source ID: LS01	715-02			2.17	10	10/11/2023	JAL	D
Duplicate (B234046-DUP2) Orthophosphate, as P	Source ID: WB0	2755-08			0.279	10	10/11/2023	JAL	D
Matrix Spike (B234046-MS1) Orthophosphate, as P	Source ID: LS)1715-02	98.4	90-110			10/11/2023	JAL	D
Matrix Spike (B234046-MS2)	Source ID: WE	802755-08							
Orthophosphate, as P			100	90-110			10/11/2023	JAL	D
Matrix Spike Dup (B234046-M Orthophosphate, as P	ISD1) Source	ID: LS0171	5-02 97.1	90-110	0.659	10	10/11/2023	JAL	D
Matrix Spike Dup (B234046-N Orthophosphate, as P	ISD2) Source	ID: WB027	55-08 100	90-110	0.0201	10	10/11/2023	JAL	D

Quality Control Report

Analyte Name	Method Blank	Units	% Recovery	Recovery Limits	RPD	RPD Limit	Analyzed	Analyst Initials	Qualifier
Total Metals									
Batch: B234059									
Blank (B234059-BLK1)									
Mercury	<0.01	ug/L					10/13/2023	SAS	U
LCS (B234059-BS1) Mercury			99.0	85-115			10/13/2023	SAS	
Duplicate (B234059-DUP1) Mercury	Source ID: AC00)322-02			NR	20	10/13/2023	SAS	U
Duplicate (B234059-DUP2) Mercury	Source ID: RW0	0036-06			NR	20	10/13/2023	SAS	U
Matrix Spike (B234059-MS1)	Source ID: AC	00322-02							
Mercury			108	70-130			10/13/2023	SAS	
Matrix Spike (B234059-MS2)	Source ID: RW	/00036-06							
Mercury			111	70-130			10/13/2023	SAS	
Matrix Spike Dup (B234059-M Mercury	WSD1) Source	ID: AC003	22-02 107	70-130	0.688	20	10/13/2023	SAS	
Matrix Spike Dup (B234059-M Mercury	WSD2) Source	ID: RW00	036-06 110	70-130	0.399	20	10/13/2023	SAS	
Batch: B234105									
Blank (B234105-BLK1)									
Arsenic	<0.070	ug/L					10/19/2023	DMW	U
Cadmium	<0.010	ug/L					10/19/2023	DMW	U
Lead	<0.010	ug/L					10/19/2023	DMW	U
LCS (B234105-BS1)			60 0	05 445			10/10/2005		
Arsenic			96.6	85-115			10/19/2023		
Lead			98.7 101	85-115 85-115			10/19/2023	DMW	
Dunlicate (B23/105-DUP1)	Source ID: ACO	1322-01	· - ·						
Arsenic	Source ID. ACO	JJZZ-01			0.428	20	10/19/2023	DMW	
Cadmium					5.71	20	10/19/2023	DMW	
Lead					1.07	20	10/19/2023	DMW	
Matrix Spike (B234105-MS1)	Source ID: AC	00322-01							
Arsenic			96.8	70-130			10/19/2023	DMW	
Cadmium			99.6	70-130			10/19/2023	DMW	
Lead			99.3	70-130			10/19/2023	DMW	
Matrix Spike Dup (B234105-I	MSD1) Source	ID: AC003	322-01						
Arsenic			94.6	70-130	1.86	20	10/19/2023	DMW	
Cadmium			98.6	70-130	0.985	20	10/19/2023	DMW	
Lead			98.6	70-130	0.635	20	10/19/2023	DMW	

Quality Control Report (Continued)

Analyte Name	Method Blank	Units	% Recovery	Recovery Limits	RPD	RPD Limit	Analyzed	Analyst Initials	Qualifier
Total Metals (Continued)	*****							
Batch: B234177	•								
Blank (B234177-BLK1)									
Calcium	<0.04	mg/L					10/20/2023	AMO	U
Magnesium	<80	ug/L					10/20/2023	AMO	U
Phosphorus as P	<0.012	mg/L					10/20/2023	AMO	U
LCS (B234177-BS1)									
Calcium			98.9	85-115			10/20/2023	AMO	
Magnesium			102	85-115			10/20/2023	AMO	
Phosphorus as P			105	85-115			10/20/2023	AMO	
Duplicate (B234177-DUP1) S	ource ID: LS01	721-06							
Calcium					0.292	20	10/20/2023	AMO	
Magnesium					2.76	20	10/20/2023	AMO	
Phosphorus as P					5.61	20	10/20/2023	AMO	
Matrix Spike (B234177-MS1)	Source ID: LS	01721-06							
Calcium			77.5	70-130			10/20/2023	AMO	
Magnesium			91.3	70-130			10/20/2023	AMO	
Phosphorus as P			97.6	70-130			10/20/2023	AMO	
Matrix Spike Dup (B234177-MS	D1) Source	ID: LS01721	1-06						
Calcium			98.3	70-130	9.81	20	10/20/2023	AMO	
Magnesium			103	70-130	10.2	20	10/20/2023	AMO	
Phosphorus as P			112	70-130	11.9	20	10/20/2023	AMO	
Batch: B234661 Blank (B234661-BLK1)									
Phosphorus as P	<0.012	mg/L					11/22/2023	AMO	U
LCS (B234661-BS1)									
Phosphorus as P			100	85-115			11/22/2023	AMO	
Duplicate (B234661-DUP1) S	Source ID: BB03	3382-01							
Phosphorus as P					2.18	20	11/22/2023	AMO	
Matrix Spike (B234661-MS1)	Source ID: BB	03382-01							
Phosphorus as P			94.0	70-130			11/22/2023	AMO	
Matrix Spike Dup (B234661-MS	SD1) Source	ID: BB0338	2-01						
Phosphorus as P			93.7	70-130	0.164	20	11/22/2023	AMO	

Quality Control Report

Analyte Name	Method Blank	Units	% Recovery	Recovery Limits	RPD	RPD Limit	Analyzed	Analyst Initials	Qualifier
Total Metals (Continue	d)								
Batch: B234799 Blank (B234799-BLK1)							12/01/2022		
Phosphorus as P	<0.012	mg/L					12/01/2023	AMO	U
LCS (B234799-BS1) Phosphorus as P			104	85-115			12/01/2023	AMO	
Duplicate (B234799-DUP1) Phosphorus as P	Source ID: EP0)294-01			0.399	20	12/01/2023	AMO	
Matrix Spike (B234799-MS1) Phosphorus as P	Source ID: EP	00294-01	101	70-130			12/01/2023	AMO	
Matrix Spike Dup (B234799-M	(SD1) Source	ID: EP002	94-01						
Phosphorus as P		10. 2. 002	101	70-130	0.280	20	12/01/2023	AMO	
Dissolved Metals		anen an en		The set of the second	1992				
Batch: B233966 Blank (B233966-BLK1)									
Cadmium	<0.010	ug/L					10/13/2023	DMW	U
Copper	<0.15	ug/L					10/13/2023	DMW	U
Lead	<0.0090	ug/L					10/13/2023	DMW	U
Zinc	<0.50	ug/L					10/13/2023	DMW	U
LCS (B233966-BS1)									
Cadmium			91.2	85-115			10/13/2023	DMW	
Copper			92.8	85-115			10/13/2023	DMW	
Lead			93.2	85-115			10/13/2023	DMW	
Zinc			95.4	85-115			10/13/2023	DMW	
Duplicate (B233966-DUP1)	Source ID: NP0	0059-05							
Cadmium					NR	10	10/13/2023	DMW	U
Copper					0.902	10	10/13/2023	DMW	
Lead					9.73	10	10/13/2023	DMW	
Zinc					1.54	10	10/13/2023	DMW	
Matrix Spike (B233966-MS1)	Source ID: NF	P00059-05							
Cadmium			94.2	70-130			10/13/2023	DMW	
Copper			87.9	70-130			10/13/2023	DMW	
Lead			90.5	70-130			10/13/2023	DMW	
Zinc			91.6	70-130			10/13/2023	DMW	
Matrix Spike Dup (B233966-	MSD1) Source	ID: NP000	059-05						
Cadmium	,		93.3	70-130	0.903	10	10/13/2023	DMW	
Copper			88.5	70-130	0.546	10	10/13/2023	DMW	
Lead			90.2	70-130	0.360	10	10/13/2023	DMW	
Zinc			92.5	70-130	0.902	10	10/13/2023	DMW	

Notes and Definitions

ltem	Definition
D	Data reported from a dilution
U	Analyte included in the analysis, but not detected

Method Reference Acronyms

Colilert	Colilert, IDEXX Laboratories, Inc.
EPA	Manual of Methods for Chemical Analysis of Water and Wastes, USEPA
GS	USGS Techniques of Water-Resources Investigations
HH	Hach Spectrophotometer Procedures Manual
SM	Standard Methods for the Examination of Water and Wastewater
SW	Test methods for Evaluating Solid Waste, SW-846

for JFK

Janet Finegan-Kelly Water Quality Laboratory Manager

Stephen Quintero or Azubike Emenari QA/QC Coordinator

			<u></u>								1							••••••	*****			
Ada Col		jnway L	vistrict				r	Matrix	Тур	be												
3775 Ada Garden Ci Tel. (208) Fax (208) Purchase Project: Sampler(s	3775 Adams Street Garden City, Idaho 83714–64 Tel. (208) 387–6269 Fax (208) 387–6391 Purchase Order: Project: Sampler(s):		18 <u>630656</u> <u>Stormw</u> <u>Kvister</u> SKver	628 vater-PI ν Ωus η Τνγ	shotm		<u>s</u>				10 B	000	0 D 0 C	51.2	Z	te - EPA 365.1 Pb - EPA 200.8	¹ b, Zn - EPA 200.8	A 245.2	X Colilert	A 200.7	PA 353.2	0 NH ₃ - D
Lab# Acop322	Begin Date	End Date	Begin Time	End Time	Sample Ide	entification	Sampler Initia	Water	Grab	Composite	BOD ₅ - SM 52	COD - Hach 8	TSS - SM 254 TDS - SM 254	TKN - EPA 36	TP - EPA 200.	Urthophospha Total As, Cd, I	Diss. Cd Cu, F	Total Hg - EF	E. Coli - IDEX Turbidity	Hardness - E	NO ₃ +NO ₂ - E	NH ₃ - SM 450
-01	ININ/13	intul23	1700	nanh	231010-03-14	2	KC	×		Х	X	>)	K X	Χį	ĸγ	X	X	X	λ	X	XY	()
-02	iohole3	10/11/23	1713	1150	231010 - 14 231010 - 15 - W	с С	Ke	X		Х	א	入,	XX	Ϋ́	××	X	×	x	×	K	XX	1
																						_
Relinquis	hed by (s	ign)	Date Tran	& Time sferred	Rece	ived by (sign)				Co	mm	ent	s/Sp	ecia	l Ins	struc	tior	าร:	iggegraag on coal dud		almentnikajitikki	
Sister	istichistoli 10			3 1242	2 Sandre	we	Li Fi al	000 V 00 0p 000e.	olur timi 22-0	ne um	Su N	umq um	ples ber solu	ed i	lea r xan	se ani ani	th ali	j ta jsi	2 5; 5 C	out	d J.	1
				anterezza a serie da se			<u> </u>	mpl	AC	201	<u>8</u> 2	2-0	20	<u>Cen</u>	<u>ور!</u> ۱	t no	am	<u>i</u>	י ז' <u>ז</u>	01010	1-14	ŵ
coc_wql-pi							<u>لى</u>	er and	<u>uneo</u>	U SON	t ba	cK	ruc r	>	A	<u>.</u> 0	<u>05</u>	22) C-59	W	<u>′24</u>	

April Griffith

From: Sent: To: Cc: Subject:

Kristen Chisholm <Kchisholm@achdidaho.org> Wednesday, October 11, 2023 1:33 PM April Griffith Steven Turner; Monica Lowe [External] Re: Site ID

Hi April,

Sorry, the correct ID is 14.

Thank you!

On Oct 11, 2023, at 1:30 PM, April Griffith <agriffith@cityofboise.org> wrote:

Caution: This is an external email and has a suspicious subject or content. Please take care when clicking links or opening attachments. When in doubt, contact your IT Department

Hi Steven,

Sorry, I forgot to include you in this email.

Thanks, April

From: April Griffith Sent: Wednesday, October 11, 2023 1:30 PM To: Kristen Chisholm <Kchisholm@achdidaho.org> Cc: Monica Lowe <mlowe@achdidaho.org> Subject: Site ID

Hi Kristen,

One of the sites on the COC says -12, but the container says -14. Which is correct?

Thanks, April

ACHD SAMPLE FILTRATION, SPLITTING, AND COMPOSITING FOR METALS

:	Sample	Split/Filter Info	Filter Used	Bottle/Lid Lots	Bottles Split	Comments
# 1	Lims#: $AC00322-01$ Location: $ACST1C$ Sample Date: $10-11-23$ Sample ID: -03	Split Date: $10-11-23$ Start Split: 1300 Start Filter: N/A Comp Time: N/A Analyst: EDM/DKT	Filter: ⊠Voss ⊠0.45µm □1.0µm ⊠5.0µm ⊠Other: <u>10,0µm</u>	Coll Jug: $ccccc047-20$ Comp Jug: μ/Λ SS Tubing: $55A2$ SS Helper: \int Stir Bar: $5500047-22$ Connector: $cccc047-22$	⊠Teflon Total ⊠TKN ⊠Teflon Diss (F) ⊠NH3 ⊠Hg CVAA ⊠NOx (F) ⊠BOD ⊠ortho-P-(F) ⊠TSS ⊠Turb ⊠TDS ⊠COD	High capacity 0,45 um No DiSS, Parameters
42	Lims#: $ACOO322-02$ Location: $ACSTIC$ Sample Date: $10-11-23$ Sample ID:14	Split Date: $10-11-23$ Start Split: 1311 Start Filter: 1315 Comp Time: N/A Analyst: $EDM/OKT/$	Filter: ⊠Voss ⊠0.45µm □1.0µm ⊠5.0µm ⊠Other: <u>ιο.οµm</u>	Coll Jug: Comp Jug: N/A SS Tubing: cL_{OOD} 47-26 SS Helper: $55A4$ Stir Bar: $ccoco 47-22$ Connector: $ccoco 47-31$	⊠Teflon Total ⊠TKN ⊠Teflon Diss (F) ⊠NH₃ ⊠Hg CVAA ⊠NOx (F) ⊠BOD ⊠ortho-P (F) ⊠TSS ⊠Turb ⊠TDS ⊠COD □	High capacity 0.45 µm
#3	Lims#: Location: Sample Date Sample ID:	Split Date: Start Split: Start Filter: Comp Time: Analyst:	Filter: ⊠Voss ⊠0.45µm □1.0µm ⊠5.0µm ⊠Other: <u>t6.0 µm</u>	Coll Jug: Comp Jug: SS Tubing: $\underline{\qquad}$ SS Tubing: $\underline{\qquad}$ SS Helper: $\underline{\qquad}$ Stir Bar: $\underline{\qquad}$ Connector: $\underline{\qquad}$	⊠Teflon Total ⊠TKN ⊠Teflon Diss (F) ⊠NH ₃ ⊠Hg CVAA ⊠NO _x (F) ⊠BOD ⊠ortho-P (F) ⊠TSS ⊠Turb ⊠TDS ⊠COD □	High capacity 0,45 um
±4	Lims#: Location: Sample Date: Sample ID:	Split Date: Start Split: Start Filter: Comp Time: Analyst:	Filter: ⊠Voss ⊠0.45µm □1.0µm ⊠5.0µm ⊠Other: <u>10.0µm</u>	Coll Jug: Comp Jug: SS Tubing: $ccoco47-18$ SS Helper: $55A7$ J Stir Bar: $ccoco41-Ac$ Connector: $ccoco40-66$	⊠Teflon Total ⊠TKN ⊠Teflon Diss (F) ⊠NH₃ ⊠Hg CVAA ⊠NO _x (F) ⊠BOD ⊠ortho-P (F) ⊠TSS ⊠Turb ⊠TDS ⊠COD □	High capacity 0.45 µm
₩5	Lims#: Location: Sample Date: Sample ID:	Split Date: Start Split: Start Filter: Comp Time: Analyst:	Filter: ⊠Voss ⊠0.45μm □1.0μm ⊠5.0μm ⊠Other: <u>iD.0 μm</u>	Coll Jug: Comp Jug: SS Tubing: <u>CC000 47-3</u> 9 SS Helper: <u>S59</u> Stir Bar: <u>CC00044-AD</u> Connector: <u>CC00035-71</u>	⊠Teflon Total ⊠TKN ⊠Teflon Diss (F) ⊠NH ₃ ⊠Hg CVAA ⊠NO _x (F) ⊠BOD ⊠ortho-P (F) ⊠TSS ⊠Turb ⊠TDS ⊠COD □	High capacity 0,45 um

cc00040-06

ACHD SAMPLE FILTRATION, SPLITTING, AND COMPOSITING FOR METALS

#6

Sample	Split/Filter Info	Filter Used	Bottle/Lid Lots	Bottles Split	Comments
Lims#: Location: Sample Date: Sample ID:	Split Date: Start Split: Start Filter: Comp Time: Analyst:	Filter: ⊠Voss ⊠0.45µm □1.0µm ⊠5.0µm ⊠Other: <u>(6.0µµ</u> m	Coll Jug: Comp Jug: SS Tubing: ccccco 39-99 SS Helper: Stir Bar: Cccco 44-AD (x2) Connector: cccco 41-66	⊠Teflon Total ⊠TKN ⊠Teflon Diss (F) ⊠NH₃ ⊠Hg CVAA ⊠NOx (F) ⊠BOD ⊠ortho-P (F) ⊠TSS ⊠Turb ⊠TDS ⊠COD □	High capacity 0.45 jun
Lims#: Location: Sample Date: Sample ID:	Split Date: Start Split: Start Filter: Comp Time: Analyst:	Filter: ⊠Voss ⊠0.45µm □1.0µm ⊠5.0µm □Other:	Coll Jug: Comp Jug: SS Tubing: SS Helper: Stir Bar: Connector:	⊠Teflon Total ⊠TKN ⊠Teflon Diss (F) ⊠NH₃ ⊠Hg CVAA ⊠NOx (F) ⊠BOD ⊠ortho-P (F) ⊠TSS ⊠Turb ⊠TDS ⊠COD □	
Lims#: Location: Sample Date: Sample ID:	Split Date: Start Split: Start Filter: Comp Time: Analyst:	Filter: ⊠Voss ⊠0.45µm □1.0µm ⊠5.0µm □Other:	Coll Jug: Comp Jug: SS Tubing: SS Helper: Stir Bar: Connector:	⊠Teflon Total ⊠TKN ⊠Teflon Diss (F) ⊠NH₃ ⊠Hg CVAA ⊠NOx (F) ⊠BOD ⊠ortho-P (F) ⊠TSS ⊠TDS □	
Lims#: Location: Sample Date: Sample ID:	Split Date: Start Split: Start Filter: Comp Time: Analyst:	Filter: ⊠Voss ⊠0.45µm □1.0µm ⊠5.0µm □Other:	Coll Jug: Comp Jug: SS Tubing: SS Helper: Stir Bar: Connector:	Image: Second state of the second s	
Lims#: Location: Sample Date: Sample ID:	Split Date: Start Split: Start Filter: Comp Time: Analyst:	Filter: ⊠Voss ⊠0.45µm □1.0µm ⊠5.0µm □Other:	Coll Jug: Comp Jug: SS Tubing: SS Helper: Stir Bar: Connector:	⊠Teflon Total ⊠TKN ⊠Teflon Diss (F) ⊠NH₃ ⊠Hg CVAA ⊠NOx (F) ⊠BOD ⊠ortho-P (F) ⊠TSS ⊠Turb ⊠TDS ⊠COD □	-

ŵ.

Technical Memorandum

1290 W. Myrtle St. Suite 340 Boise, ID 83702

Phone: 801.316.9859

- Prepared for: Ada County Highway District
- Project Title: NPDES Phase I Stormwater Support WY 2024
- Project No.: 159103

Technical Memorandum

- Subject: ACHD Phase I Storm Event Report for November 19, 2023
- Date: February 14, 2023
- To: Monica Lowe
- Cc: Steven Turner Kristen Chisholm
- From: Zuly Lapa, Project Engineer
- Prepared by: Zuly Lapa, EIT, Project Engineer

Reviewed by: Melissa Jannusch, PE, Project Manager

Limitations:

This document was prepared solely for ACHD in accordance with professional standards at the time the services were performed and in accordance with the contract between ACHD and Brown and Caldwell dated October 10, 2023. This document is governed by the specific scope of work authorized by ACHD; it is not intended to be relied upon by any other party except for regulatory authorities contemplated by the scope of work. We have relied on information or instructions provided by ACHD and other parties and, unless otherwise expressly indicated, have made no independent investigation as to the validity, completeness, or accuracy of such information.

Section 1: Introduction

The Environmental Protection Agency Region 10 reissued a Municipal Separate Storm Sewer System Phase I National Pollutant Discharge Elimination System Permit (NPDES Permit), effective October 1, 2021, to Ada County Highway District (ACHD), Boise City, Ada County Drainage District No. 3, Idaho Transportation Department District 3, Boise State University, and Garden City. Under the NPDES Permit, Permittees are required to continue to conduct wet weather stormwater outfall monitoring and subwatershed monitoring. Four outfall monitoring sites (Lucky, Whitewater, Main, and Americana) and one subwatershed monitoring site (AS_6) have been established. The AS_6 site represents a subwatershed located within the Americana watershed. At each site, a minimum of three composite and three grab samples will be collected during Water Year (WY) 2024 (October 1, 2023, through September 30, 2024). The following storm event report summarizes stormwater sampling results from the November 19, 2023, storm event.

Section 2: Project Status

Table 2-1 is a summary of the sample types collected to date for WY 2024 Phase I Stormwater Outfall Monitoring. When samples are qualified, additional samples will be attempted from subsequent storms to collect unqualified samples.

Table 2-1. WY 2024 Samples Collected									
Date	Lucky	Whitewater	Main	Americana	AS_6				
October 10, 2023	G, C ^{1,2}	G		G, C ³					
November 19, 2023	G, C	G, C	G, C	G4, C	G, C				
Unqualified Samples:	2G, 1C	2G, 1C	1G, 1C	2G, 1C	1G, 1C				
Samples Remaining:	1G, 2C	1G, 2C	2G, 2C	1G, 2C	2G, 2C				

Notes:

– = no samples taken

C = composite sample

G = grab sample

 1 Composite samples qualified due to lack of representativeness (50% – 75%).

² Incomplete water quality analysis due to low composite sample volume.

³ Composite samples qualified due to lack of representativeness (50% - 75%) of the calculated flow volume.

⁴ Grab sample qualified due to incomplete field parameter collection.

Section 3: Storm Event Summary

The November 19, 2023, storm event and the subsequent preparation and sampling efforts are detailed in the following sections.

3.1 Storm Detail

A summary of the forecast on which monitoring decisions were based is detailed below. The sampling event communication form that describes the forecast and summarizes the decision-making process from November 19, 2023, is included in Attachment A for reference.

Saturday, November 18, 2023 (Sampling Event Communication and Set Up)

- On the afternoon of November 18, the National Weather Service issued a forecast for widespread rain in the Boise area, starting November 18 at 2100 and ending on November 19 at 0000. The chance of precipitation was greater than 80%, with 0.20 to 0.30 inches of precipitation forecasted.
- Setup was accomplished in the afternoon of November 18. An expected precipitation depth of 0.11 inches was used to set trigger volumes at monitoring stations. A runoff calculations worksheet showing how the trigger volumes were calculated is included in Attachment A.

Sunday, November 19, 2023 (Storm Event)

- Moderate rain first started at approximately November 19 at 0000 and ended at 1642.
- Precipitation totals ranged between 0.42 and 0.61 inches at local rain gauges.

Flow measurements and precipitation data are listed in Table 1 along with a sampling summary. Hydrograph for the Lucky, Whitewater, Main, Americana and AS_6 site showing flow, rain, and sample collection data are included in Attachment B.

3.2 Sampling Summary

Lucky, Whitewater, Main, Americana and AS_6 monitoring stations were set up on November 18, to collect flow-proportional composite samples during the storm. Sampler enable conditions were programed into the Whitewater and Americana flowmeters. A site-specific velocity cutoff value was programmed into Lucky, Main, and AS_6 flowmeter. Setup and sampling information are included in Table 1. The field forms completed during setup/shutdown and sampling are included in Attachment C.

Grab Samples

Two, two-member team mobilized to collect stormwater runoff grab samples and verify operation of the automatic sampling equipment on November 19 at 0110. Grab samples for Lucky, Whitewater, Main, and Americana were submitted to the West Boise Water Quality Lab (WQL) at 0758 on November 19. The AS_6 grab sample was submitted at 1342 on November 19 to the WQL.

Results for grab samples, including field parameter and analytical data, are included in Table 2. Laboratory analytical reports are included in Attachment D.

Composite Samples

Composite samples were collected at the Whitewater, Main, and Americana monitoring station and submitted to the WQL at 1716 on November 19. The composite samples at the AS_6 monitoring station was submitted at 1342 and the Lucky monitoring station at 1603 on November 19 to the WQL.

Analytical results are shown in Table 2 and pollutant loading estimates for the event are detailed in Table 3. Laboratory analytical reports are included in Attachment D.

Section 4: Quality Assurance/Quality Control

A summary of quality control samples collected during the November 19, 2023, storm event is presented below in Table 4-1. A field blank and a field duplicate were collected from the Americana monitoring station. The analytical results for these samples are included in Table 4.

Table 4-1. Quality Control Samples								
Sample ID	Sample Type	Parent Sample	Conclusions					
231119-14-001	Field blank	Americana grab	No E. coli detection was reported in the field blank.					
231119-14-101	Field duplicate	Americana grab	Relative percent difference was within the acceptable range.					

Data quality objectives for this storm were evaluated and tracked using the data validation review checklist included in Attachment A.

An acceptable composite sample represents at least 75 percent of the total discharge or at least 6 hours of the storm duration. All composite samples met the criteria.

The acceptance and performance criteria for analytical and non-analytical criteria were met for this storm event.

Section 5: Notes and Recommendations

Whitewater

The small sampler battery died at approximately 0537 on Bottle No. 2. The battery was replaced, and the sampler program was then restarted at 0800 and continued until the end of the storm event. The battery issue resulted due to setting up the sampler program earlier in the week. It is advised to check on the small battery prior to the storm event if set-up is completed a day earlier.

AS_6

The AS_6 composite samples had two distribution errors at 0650 and 0740 on Bottle No. 2. The AS_6 sampler battery later died after taking the last composite sample but was then replaced. The sample program was restarted at 0826. There was also a No-Liquid-Error at 0953, but no succeeding errors occurred until the end of the event. It is advised to check on the small battery prior to the storm event if set-up is complete a day earlier.

Data Tables

TAB-1 ACHD_231119 SER PI SER_159103_FINAL

Table 1. Sampling and Flow Summary									
	Lucky	Whitewater	Main	Americana	AS_6				
Grab samples collected and submitted?	YES	YES	YES	YES	YES				
Composite samples collected and submitted?	YES	YES	YES	YES	YES				
Trigger volume (gal or ft ³)	2895 gal	800 ft ³	3411 gal	2960 ft ³	221 ft ³				
Velocity cutoff (fps)	0.02		0.02		0.02				
Sampler enable condition (in)		Level > 1.9"		Level > 6.96 "					
Runoff start time	0038	0102	0029	0000	0251				
Grab sample collection time	0156	0247	0122	0151	0620				
Composite sample stop time	1328	1528	1442	1407	1221				
Runoff stop time	1500	1552	1446	1642	1615				
Volume of Discharge Sampled (ft ³)	17,699	73,819	28,140	251,136	19,247				
Total runoff volume (ft ³)	18,782	81,522	35,160	317,217	21,217				
Percent of storm flow sampled (%)	94%	91%	80%	79%	91%				
Composite sample duration (hrs)	11	13	13.5	12.5	9				
Storm Precipitation (in)	0.42	0.61	0.50	0.50/0.58	0.50/0.58				
Referenced Rain Gauge	Cynthia Mann	Whitewater	Front	Front/East	Front/East				
Sampler messages (counts): Success	46	82	60	88	81				
Number of composite bottles filled	2	3	3	4	4				
Composite sample volume (Approx.; ml)	27,250	36,750	36,000	50,000	54,500				

Notes:

– = No data.

	Table 2. Field and Analytical Data Summary																										
			Field Parameters						Analytical Parameters																		
Monitoring	Comple Date		Dissolved			Tomorotum						Turkidiku				Orthophosphate		Nitrate +			Cadmium,		Copper,			Mercury,	
Station	Sample Date	Salliple ID Grab	Oxygen		Conductivit	ty reinperature		Composito	BODS		CaCO ₃	Turbiuity			Phosphorus			Nitrite as N		Arsenic, total	dissolved			dissolved			
			mg/L	S.U.	uS/cm	С	mpn/100 mL	Composite	mg/L	mg/L	mg/L	NTU	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Lucky	11/19/2023	231119-03-WG	5.09	7.27	506.44	15.7	2.0	231119-03-WC	59.5	137	35.8	8.6	8.63	136	0.710	0.538	0.530	0.145	1.76	0.93	0.012	0.030	3.5	0.085	0.33	< 0.0100	32.7
Whitewater	11/19/2023	231119-11-WG	5.82	7.34	460.32	12.96	99.0	231119-11-WC	61.9	167	45.0	19.7	27.3	180	0.958	0.768	0.527	0.182	2.07	1.7	< 0.0100	0.041	5.0	0.21	2.2	< 0.0100	32.3
Main	11/19/2023	231119-12-WG	9.48	7.64	174.43	10.54	30.9	231119-12-WC	19.9	61.0	19.3	11.7	16.2	61.0	0.226	0.167	0.610	0.246	1.14	0.66	0.015	0.045	2.7	0.12	1.7	< 0.0100	25.9
Americana	11/19/2023	231119-14-WG	3J	31	3J	14.16	1340.0	231119-14-WC	36.5	94.0	57.8	15.0	21.7	153	0.504	0.402	0.454	0.614	1.27	2.1	0.022	0.061	4.0	0.11	1.9	< 0.0100	27.2
AS_6	11/19/2023	231119-206-WG	9.44	7.18	184.28	9.04	1732.9	231119-206-WC	162	329	43.3	21.1	28.7	263	2.06	1.71	0.563	0.136	3.17	1.7	0.029	0.059	8.5	0.93	3.3	<0.0100	61.8

Notes: - = No data. ³¹ Grab sample qualified due to incomplete field parameter collection.

Table 3. Event Pollutant Loading Estimates in Pounds										
Monitoring Station	Event Date	TSS	Total Phosphorus	Ammonia as N	Nitrate + Nitrite as N	TKN				
Lucky	11/19/2023	10.1	0.832	0.621	0.170	2.06				
Whitewater	11/19/2023	139	4.87	2.68	0.926	10.5				
Main	11/19/2023	35.5	0.496	1.34	0.540	2.50				
Americana	11/19/2023	430	9.98	8.99	12.2	25.1				
AS_6	11/19/2023	38.0	2.73	0.746	0.180	4.20				

	Table 4. QC Sample Summary										
Date	Parent Sample	Sample ID	Туре	E. coli							
				mpn/100 mL							
11/19/2023	231119-14-WG	231119-14-001	Field Blank	<1.0							
11/19/2023	231119-14-WG	231119-14-101	Field Duplicate	866.4							
	4%										
	Allowa	ble RPD		40%							

Attachment A: Supplemental Documents

Sampling Event Communication Form Data Validation Checklist Runoff Calculation Worksheet

SAMPLING EVENT COMMUNICATION FORM

Date: 11/18/2023	Time: 2:30 PM	Initials:	ST
Is there a targeted sampling event du	iring the next 36 hours?		Yes
(Or, if it is Friday, is a targeted event	expected before 5:00 PM Monday?)		

Past 72 hr Precip	0.00"
Date and time of expected event	11/18/2023
Expected amount of precipitation	0.2 – 0.3"
Percent chance of precipitation	90%
Percent chance of >0.10" over 12 hours	Upper 80%

NWS Update

Steven from the NWS said that the rain will be moving in between 9:00 PM and midnight.

It will taper off around 6:00 – 7:00 AM on Sunday morning.

Between those times, their models are predicting .16 - .42". I asked if he could narrow the amount down and he said 0.26" is the average.

The heavier rain will start later around 11:00 PM to 1:00 AM.

Targeted Station & Samples										
Lucky	Whitewater	Main	Americana	AS_6	State (Phase II)					
🖾 Grab	🖾 Grab	🖾 Grab	🖾 Grab	🖾 Grab	🖾 Grab					
oxtimes Composite	🛛 Composite	🛛 Composite	🛛 Composite	🛛 Composite	oxtimes Composite					

Type of Forecasted Precipitation			
🗆 Light Rain	🛛 Rain	🗌 Rain on Snow	
Scattered Showers	Thunder Showers	Snowmelt	
□ Other:			

Reasons for Not Targeting a Forecasted Storm and/or Stations

□ Holiday

□ Waiting on Antecedent Dry Period – Expires:

Equipment Concerns:

 \Box Other:

Text Forecast

Forecast Discussion

Hourly Forecast

Storm Event QA/QC Checklist – Phase I

STORM DATE 11/19/23							and the		
A. Event and Data Completeness	Yes	No	N/A	Notes			1.2.1.		2.11
1. Field data sheets filled out completely and clearly	\times								
2. Field parameters reviewed, and any problems/issues addressed	X		Noted missed parameters in sample status						
3. All samples collected as specified	X								
4. All samples delivered to lab promptly (review chain of custody rpts)	X								
5. Inconsistencies/clarifications discussed with sampling team member	X		Americana field parameters were incomplete					mplete.	
6. All analytical reports from lab received	X								1
B. Validation and Verification Methods	Yes	No	No N/A Notes						
1. Outliers and unexpected values discussed with lab			X						
2. Appropriate analytical methods used	X								
3. All lab QA samples were within method acceptance criteria	X							0	
4. All samples reviewed and data qualifiers assigned if needed	X				_				
5. Data quality objective achieved	X								
C. Specific Storm and Sample QA/QC Criteria	Lucky	Whitewater	Main	Americana	AS_6	Program Criteria	Met	Qualify	Reject
1. Antecedent dry period (inches in previous 72-hours)	0.00"	0.00	0.00	0.00	0.00	< 0.11" in 72 hrs	X		
2. Precipitation (inches)	0.42	0.61	0.50	0.50	0.50	> 0.10"	X		
3. Sampled amount (% of total run-off)	94%	91%	80%	79%	91%	>= 75% or >= 6 hrs: no qualifier			
4. Composite sample duration (hours)	11	13	13.5	12.5	9	< 50% and < 75%; quality < 50%; reject	X		
4. Ecoli sample holding time (hours)	7.5	6.5	7.5	577.07.5 7.5 7.5 8 and $<=16$ hrs.: qualify 1					
5. Filtering of samples for dissolved parameter analysis (hours)	3.0	2.5	3.5	3.5	1.5	<= 24 hrs: no qualifier > 24 hrs.: reject	X		
D. Notes									

Americana - Field parameters (Do, pH, cond) not recorded during grab Sample collection.

Reviewed by Herren Jum

_Date_2/12/24

Monica Lowe _Date__2/12 24 Approved by

Storm Runoff Estimates and Trigger Volumes

- Step 1. Enter runoff coefficients in yellow cells.
- Step 2. Enter expected precipitation depth (in) in blue cell.

Step 3. Read trigger volumes (**bold**) in green cells.

Expected Precipitation Depth = 0.11 Aliquots per Sample = 17

		Using RC calculated from flow data						
Site Area			Expected	Trigger				
	(ac)	RC	Vol (ft ³)	Vol (ft ³)				
Lucky	105	0.157	6582.5	387				
Whitewater	498	0.069	13621.3	801				
Main	79	0.246	7760.0	456				
Main Alt	60	0.200	4791.6	282				
Americana	875	0.144	50311.8	2960				
AS_6	204	0.046	3747.0	220				
State	34	0.160	2172.2	128				

Notes:

Calculated RC = Average (precip (ft) / [volume (ft^3) x area (ft^2)])

Where precip (ft) is the measured amount from local rain guage, and volume (ft³) is the measured discharge, and area (ft²) is the watershed area

Expected volume (ft^3) = RC x expected precip (ft) x area (ft^2)

Attachment B: Storm Event Hydrographs

Whitewater Hydrograph

AS_6 Hydrograph

Attachment C: Field Forms

Set Up/ Shut Down Form – HACH (Lucky, Main, AS_6)

ersonnel: <u>ST, KC</u>	Time				
ersonnel: <u>ST, KC</u>	Time				
		Level (in)	Flow (cfs)	Velocity (fps)	Battery (V)
ate/Time	13:47	18	73.34	136	13.1
	13.52	1.7	0.00	ð	
n-Site: 1/7 23 15.34				1216 0 200	
E:	Enat	ole Condition or	Velocity Cutof	- Vice Jore	-gat 0.02
			Deadband	1: 1.0 20196	0
			rigger volume	- Bisg	aX
et nowmeter program and sampler pro- et logging interval to 1 minute tart flowmeter program and sampler p erify running ments: Readings when Wo flow in Pipe.	rogram first tuine	d on, n	οω Γεας	ling D's	after upg
	•				
IT DOWN	Time Level	(in) Flow (#5) Velocit	y (fps) Total (cf) Battery (V)
IT DOWN rsonnel: ST, KC	Time Level	(in) Flow (velocit	y (fps) Total (cf) Battery (V)
rsonnel: <u>ST</u> , KC	Time Level	(in) Flow ((1) 5 flow ((1) 5 flow () 5 flow ((6) Velocit 57m (6) 〇・1	y (fps) Total (cf) Battery (V) i Z . S
IT DOWN rsonnel: <u>ST</u> , KC hte/Time <u>11/19/23 15-18</u> h-Site: <u>11/19/23 15-18</u>	Time Level 1522 (.C Downloadd	l (in) Flow (い ろご ed to: いちの	第) 57m く 0・1 5、3 (人の)	y (fps) Total (22	cf) Battery (V) 1 Z . 8

Comments:

 \bigcirc

Composite Sample Collection

STATION: Luder Personnel: ST. KC

Date/Time On-Site:\\//9/23

of_L

Bottle_

🛱 Halt sampler program			
🔯 Put lid on sample bottle; label sample bottle			
Sample ID:	1231119-63	-WC	
Approx Sample Volume (mL):	14000mL		
Clarity (ex. Clear, Cloudy, Silty):	Moridy		
Color (ex. Clear, Gray, Tan, Brown, Black):	Brown		
QA/QC Sample ID:		-103	(Time: 1200)

Subsample Information								
Trigger #	Date/Time	Error Message/ Subsample Result	Trigger #	Date/Time	Error Message/ Subsample Result			
1	11/19/23 210	Success	13	1 500				
2	1 234		14	. 527				
3	248		15	543				
4	300		16	535				
5	311		17	604				
6	322		18	612				
7	334		19	619				
8	348		20	627				
9	402		21	6336				
10	416		22	647				
11	430		23	1 702				
12	-146	×	24	V.				

Comments:

If sampling is complete:

- D Power off sampler, if separate from flowmeter
- Keep flowmeter running
- □ Add ice to sample transport cooler

If continuing sampling (sample bottle change-out):

- 🖾 Keep flowmeter running
- 😡 Install new 15L bottle, add ice
- Restart program from beginning
- Date/Time Restarted: 11/14/23 7:12
- Verify running

Liquid Height vs. Approximate Sample Volume Conversion Chart									
Liquid Height	Sample Volume	Liquid Height	Sample	Liquid Height	Sample	Liquid	Sample	Liquid	Sample
0.5"	400 mL	3.0"	3500 mL	5.5"	7250 mL	8.0"	11000 mL	10.5"	14750 mL
1.0"	800 mL	3.5"	4250 mL	6.0"	8000 mL	8.5"	11750 mL	11.0"	15500 mL
1.5"	1400 mL	4.0"	5000 mL	6.5"	8750 mL	9.0"	12500 mL	11.5"	16250 mL
2.0"	2000 mL	4.5"	5750 mL	7.0"	9500 mL	9.5"	13250 mL	After 12"	1" = 1500 mL
2.5"	2750 mL	5.0"	6500 mL	7.5"	10250 mL	10.0	14000 mL	Lab min	8,000 mL
Composite Sample Collection Bottle 2 of 2

TATION:

onnel:

Date/Time On-Site: ____

 Halt Sampler program

 Put lid on sample bottle; label sample bottle

 Sample ID:
 13230

 Approx Sample Volume (mL):
 13230

 Clarity (ex. Clear, Cloudy, Silty):
 13230

 Color (ex. Clear, Gray, Tan, Brown, Black):
 1000

 QA/QC Sample ID:
 -103

		Subsamı	ole Information		
Trigger #	Date/Time	Sampler Message/ Subsample Result	Trigger #	Date/Time	Sampler Message/ Subsample Result
1	W19/23741	Svecess	13	1927	2
2	1 804		14	936	
3	313		15	947	<u></u>
4	827	1 + C	16	459	1. Sec. 1. Sec
5	839		17	1012	
6	841		18	1026	
7	547		19	10211	
8	\$93		20	1058	
9	859		21	122	
10	905		. 22	1200	
11	912		23	V 1328	\mathbf{V}
12	QICI		24		

Comments:

If sampling is complete:

Power off sampler

Verify flowmeter is running

Add ice to sample transport cooler

Complete COC form; arrange transport to lab

- If continuing sampling (sample bottle change-out):
 - Keep flowmeter running
 - Install new 15L bottle; add ice
 - □ Restart program from beginning

Date/Time Restarted: _____

□ Verify running

	and the states		Liquid Height	s. Approxim	ate Sample Volu	ume Convers	sion Chart		
Liquid	Sample	Liquid	Sample	Liquid	Sample	Liquid	Sample	Liquid	Sample
Height	Volume	Height	Volume	Height	Volume	Height	Volume	Height	Volume
0.5"	400 mL	3.0"	3500 mL	5.5"	7250 mL	8.0"	11000 mL	10.5"	14750 mL
1.0"	800 mL	3,5"	4250 mL	6.0"	8000 mL	8.5"	11750 mL	11.0"	15500 mL
1.5"	1400 mL	4.0"	5000 mL	6.5"	8750 mL	9.0"	12500 mL	11.5"	16250 mL
2.0"	2000 mL	4.5"	5750 mL	7.0"	9500 mL	(9.5"	13250 mL	After 12"	1" = 1500 mL
2.5"	2750 ml	5.0"	6500 ml	7.5"	10250 mL	10.0"	14000 mL	Lab min	8,000 mL

Grab Sample Data Form

		1	ł.,	
2	A.	λ	1	
1	1	C,	3	
1	5	1	2	
	1.00	٤.1	-	٠

STATION: LUCKU

		Flov	v Meter Curre	ent Status		
Time	Level (in)	Flow (cfs)	Velocity (fps)	Battery (V)	Flow Start (date/time)	Rainfall (in)
ncan	7.11	Q 41 apm	012	128		1

Grab Information							
	Sample ID	Date	Time	Labeled?			
Site E.Coli	23119-03 -WG	11/19/23	01/38 am				
Field Duplicate E.Coli	-101						
Field Blank E.Coli	-001						

*Note: time on bottle for QC samples is 1200

Field Parameters							
Meter number	Time	Temp (C)	D.O. (mg/L)	рН (S.U.)	SpCond (uS/cm)		
MPO9	0156 am	15.70	5.09	7.27	506.44		

Sampler Current Status			
First Subsample Date/Time	NA @ 201 am		
Last Subsample Date/Time			
# of Subsamples taken			

Comments:

Revised 210924 TL

Set Up/ Shut Down Form – ISCO (Whitewater, Americana, State)

VCST	Time	Level (in)	Flow (cfs)	Velocity (fps)	Battery (V	
ersonnel: <u>FC_</u>	1418	0.88	0.02	0.28	12.8	
ate/Time n-Site: 11/17/23 1418						
	Er	able Condition:	1.9			
	Hysteresis:					
n-Site Replace flowmeter battery, install san	pler battery	Flowlink (Refert	o PG 411 or PG Remote; Date, data and review	if needed) (time <u>Set سا</u> w recent flow hist	Veypard	
Install 15L sample bottle, with ice	alabla plactic bag	Change Wireless Power Control to Storm Event Change Data Storage Rates to 1 minute for Level, Velocity, Total Flow, and Flow Rate				
Leave bottle lid at site, in a clean re-se	alable blastic bag					
Check date/time on sampler	 Enable Sampler: On Trigger, and set Sampler Enable equation Set Sampler Pacing to Flow Paced, and set trigger volume 					
Verify sampler program is running						

SHUT	DOWN
------	------

ST ST	Time	Level (in)	Flow (cfs)	Velocity (fps)	Battery (V)
Personnel:	1259	3.08	0.495	1.083	12.6
Date/Time		Downloaded to:	Steven's	USB	
On-Site: 11/20 1298					

On-Site	Flowlink (Refer to Flowlink Instructions, if needed)
Replace flowmeter battery	Direct or Remote; Date/time 12.48
Remove battery from sampler	🗷 Retrieve data
	Change Wireless Power Control to Dry Weather
	Change Data Storage Rates to 15 minutes for Level,
	Velocity, Total Flow, and Flow Rate
	Enable Sampler: Never

Comments:

STATION:	Whitewarter	
Personnel:	ST. KC	

Date/Time On-Site: 11/14/2003

Bottle

of

🕱 Halt sampler program				
🖈 Put lid on sample bottle; label sample bottle				
Sample ID:	12:31119 -	1	-WC	
Approx Sample Volume (mL):		11750	nL	
Clarity (ex. Clear, Cloudy, Silty):				
Color (ex. Clear, Gray, Tan, Brown, Black):				
QA/QC Sample ID:			-103	(Time: 1200)

		Subsamp	le Informatio	n	
Trigger #	Date/Time	Error Message/ Subsample Result	Trigger #	Date/Time	Error Message/ Subsample Result
1	11/1/13224	Sucress	13	408	1
2	244		14	414	
3	253		15	421	
4	309		16	423	
5	318		17	436	
6	325		18	нчч	
7	332	-	19	453	
8	-339		20	1 503	4
9	344		21	110 P	
10	290		22		
11	399		23		
12	401		24		

Comments:

If sampling is complete:

- D Power off sampler, if separate from flowmeter
- □ Keep flowmeter running
- □ Add ice to sample transport cooler

If continuing sampling (sample bottle change-out):

- Keep flowmeter running
- 🕅 Restart program from beginning
- Date/Time Restarted: 11/19/23 505
- Verify running

	Liquid Height vs. Approximate Sample Volume Conversion Chart										
Liquid	Sample	Liquid	Sample	Liquid	Sample	Liquid	Sample	Liquid	Sample		
Height	Volume	Height	Volume	Height	Volume	Height	Volume	Height	Volume		
0.5"	400 mL	3.0"	3500 mL	5.5"	7250 mL	8.0"	11000-mL	10.5"	14750 mL		
1.0"	800 mL	3.5"	4250 mL	6.0"	8000 mL	8.5"	11750 mL	11.0"	15500 mL		
1.5"	1400 mL	4.0"	5000 mL	6.5"	8750 mL	9.0"	12500 mL	11.5"	16250 mL		
2.0"	2000 mL	4.5"	5750 mL	7.0"	9500 mL	9.5"	13250 mL	After 12"	1" = 1500 mL		
2.5"	2750 mL	5.0"	6500 mL	7.5"	10250 mL	10.0"	14000 mL	Lab min	8.000 mL		

STATION: White Water

Bottle 2 of 3

~800

Date/Time On-Site: 11/9/23

Halt Sampler program			
Put lid on sample bottle; label sample bottle			
Sample ID:	23/19-11	-WC	
Approx Sample Volume (mL):	15500ml		
Clarity (ex. Clear, Cloudy, Silty):	Cloudy		
Color (ex. Clear, Gray, Tan, Brown, Black):	Brown		M.
QA/QC Sample ID:		-103	(Time: 1200)

Trigger #	Date/Time	Sampler Message/ Subsample Result	Trigger #	Date/Time	Sampler Message/ Subsample Result
1	11/19/23 514	Success	13		
2	1 520	V	14		
3	537	Power Guiled	15		
4	546		16		
5	654		17		
6	100	2222	18		
7	iopio	J.	19		
8	1.12		20		
9			21		
10			22		
11			23		
12			24		

 If sampling is complete:
 If continuing sampling (sample bottle change-out):

 Power off sampler
 If continuing sampling (sample bottle change-out):

 Verify Flowmeter is running
 If continuing sampling (sample bottle change-out):

 Add ice to sample transport cooler
 Install new 15L bottle; add ice Used Same bottle change-out):

 Complete COC form; arrange transport to lab
 If continuing sampling (sample bottle change-out):

 Verify running
 If continuing sampling (sample bottle change-out):

 Verify running
 Verify running

10 C 10 C 10 C	10000		Liquid Height	s. Approxim	ate Sample Volu	ume Convers	sion Chart		
Liquid Height	Sample	Liquid Height	Sample	Liquid Height	Sample Volume	Liquid Height	Sample Volume	Liquid Height	Sample Volume
0.5"	400 mL	3.0"	3500 mL	5.5"	7250 mL	8.0"	11000 mL	10.5"	14750 mL
1.0"	800 mL	3.5"	4250 mL	6.0"	8000 mL	8.5"	11750 mL	(11.0"	15500 mU
1.5"	1400 mL	4.0"	5000 mL	6.5"	8750 mL	9.0"	12500 mL	11.5"	16250 mL
2.0"	2000 mL	4.5"	5750 mL	7.0"	9500 mL	9.5"	13250 mL	After 12"	1" = 1500 mL
2.5"	2750 mL	5.0"	6500 mL	7.5"	10250 mL	10.0"	14000 mL	Lab min	8,000 mL

STATION: eupTer Personnel:

Bottle Date/Time On-Site: 11/19/23

🖼 Halt Sampler program			
Put lid on sample bottle; label sample bottle			
Sample ID:	23119-11	-WC	
Approx Sample Volume (mL):			
Clarity (ex. Clear, Cloudy, Silty):			
Color (ex. Clear, Gray, Tan, Brown, Black):			
QA/QC Sample ID:		-103	(Time: 1200)

rigger #	Date/Time	Sampler Message/ Subsample Result	Trigger #	Date/Time	Sampler Message/ Subsample Result	
1	1/11/23 821 841	11/23 Set 8411 Success		1 923)	
2	1 7844	1	14	9127		
3	848		15	93		
4	851		16	935		
5	855		17	938		
6	858		18	942		
7	902		19	946		
8	905		20	951	¥	
9	909		21	955		
10	912		22	959	1	
11	7/10		23	1004		
12	920		24	V 1008	or	

if	samp	ling	is	comp	lete:
----	------	------	----	------	-------

- D Power off sampler
- □ Verify flowmeter is running
- □ Add ice to sample transport cooler
- Complete COC form; arrange transport to lab

If continuing sampling (sample bottle change-out): Keep flowmeter running Install new 15L bottle; add ice Restart program from beginning

- Date/Time Restarted:\\/9/1310
- Verify running

	Liquid Height vs. Approximate Sample Volume Conversion Chart										
Liquid	Liquid Sample Liquid Sample Liquid Sample Liquid Sample Liquid Sa										
Height	Volume	Height	Volume	Height	Volume	Height	Volume	Height	Volume		
0.5"	400 mL	3.0"	3500 mL	5.5"	7250 mL	8.0"	11000 mL	10.5"	14750 mL		
1.0"	800 mL	3.5"	4250 mL	6.0"	8000 mL	8.5"	11750 mL	11.0"	15500 mL		
1.5"	1400 mL	4.0"	5000 mL	6.5"	8750 mL	9.0"	12500 mL	11.5"	16250 mL		
2.0"	2000 mL	4.5"	5750 mL	7.0"	9500 mL	9.5"	13250 mL	After 12"	1" = 1500 mL		
2.5"	2750 mL	5.0"	6500 mL	7.5"	10250 mL	10.0"	14000 mL	Lab min	8.000 mL		

Bottle 3 of 3 Date/Time On-Site: 11/19/23 1425

1		
Halt Sampler program		
Put lid on sample bottle; label sample bottle		
Sample ID:	231119-11 -wc	
Approx Sample Volume (mL):	9500	
Clarity (ex. Clear, Cloudy, Silty):	Murky / Cloudy	
Color (ex. Clear, Gray, Tan, Brown, Black):	Bisch	
QA/QC Sample ID:	-103	(Time: 1200)

	Subsample Information									
Trigger #	Date/Time		Date/Time Sampler Message/ Subsample Result		Trigger #	Date/Time		Sampler Message/ Subsample Result		
1	11/19/23 1048		Success IDISKC		13	1 25	53	Success		
2	1 10	054	Y	4052	14	132	3			
3		100			15	140	8			
4		106			16	15:	28			
5		113			17	•				
6		1120			18					
7	i i i	128			19					
8)	137			20					
9		147			21					
10	1	159			22					
11	ľ	213			23					
12	j j	231	X		24					

Comments:

and a second second

If sampling is complete:

- A Power off sampler

STATION: White water

Personnel:

Verify flowmeter is running Add ice to sample transport cooler

Complete COC form; arrange transport to lab

If continuing sampling (sample bottle change-out):

- □ Keep flowmeter running
- □ Install new 15L bottle; add ice
- □ Restart program from beginning

Date/Time Restarted: _____

□ Verify running

			Liquid Height	vs. Approxim	ate Sample Volu	ume Convers	sion Chart		
Liquid Height	Sample Volume								
0.5"	400 mL	3.0"	3500 mL	5.5"	7250 mL	8.0"	11000 mL	10.5"	14750 mL
1.0"	800 mL	3.5"	4250 mL	6.0"	8000 mL	8.5"	11750 mL	11.0"	15500 mL
1.5"	1400 mL	4.0"	5000 mL	6.5"	8750 mL	9.0"	12500 mL	11.5"	16250 mL
2.0"	2000 mL	4.5"	5750 mL	7.0"	9500 mL	9.5"	13250 mL	After 12"	1" = 1500 mL
2.5"	2750 mL	5.0"	6500 mL	7.5"	10250 mL	10.0"	14000 mL	Lab min	8,000 mL

Grab Sample Data Form

STATION: White Water Personnel: HRJ GTK 19/23 2:35 am _____ Date/Time On-Site: __ **Flow Meter Current Status** Flow Volocity Pattony Timo Т 1 Elow Start Dainfall

Time	(in)	(cfs)	(fps)	Battery (V)	(date/time)	(in)
02:51 am	3.91	0.94	1.44			

	Grab Information									
	Sample ID		Date	Time	Labeled?					
Site E.Coli	231119-11	-WG	11/19/23	02-39 am	ď					
Field Duplicate E.Coli		-101								
Field Blank <i>E.Coli</i>		-001								

*Note: time on bottle for QC samples is 1200

Field Parameters									
Meter number	Time	Temp (C)	D.O. (mg/L)	рН (S.U.)	SpCond (uS/cm)				
MP09	02:47 an	12.96	5,82	7.34	460.32				

P.	Sampler Current Status					
First Subsample Date/Time	2:24 0/ 1/ 1/23					
Last Subsample Date/Time	244 11/1					
# of Subsamples taken	32					

Comments:

Set Up/ Shut Down Form – HACH (Lucky, Main, AS_6)

				102	Male in the star	Datter (1/)
Porsonnel: VC.ST	Time	e Leve	el (in) Fl	ow (cfs)	Velocity (Tps)	Battery (V)
	1511	0.8	35 12.	00	0.00	12.8
Date/Time		0.				
On-Site: 11/17/23 1507						
		Enable Cond	dition or Velo	city Cutoff:	0.02	
			Tulas	Deadband:	2411	
			irigg	er volume:	וודכ	
Set flowmeter program and sampler program and sampler program and sampler of Start flowmeter program and sampler Verify running comments:	rogram parameters program					6
Set flowmeter program and sampler program and sampler program and sampler of the start flowmeter program and sampler verify running tomments:	rogram parameters program Time	Level (in)	Flow (cfs)	Velocity ((fps) Total (cf) Battery
Set flowmeter program and sampler program and sampler program and sampler of Start flowmeter program and sampler Verify running comments:	rogram parameters program - Time - 12 32	Level (in)	Flow (cfs)	Velocity ((fps) Total (cf) Battery
Set flowmeter program and sampler program and sampler program and sampler of Start flowmeter program and sampler Verify running omments: HUT DOWN Personnel:	rogram parameters program - Time l2 32 Dow	Level (in) 1.37 nloaded to:	Flow (cfs)	Velocity (D Tr USB	(fps) Total (cf) Battery
Set flowmeter program and sampler program and sampler program and sampler of Start flowmeter program and sampler verify running omments: HUT DOWN Personnel:	rogram parameters program Time 12 32 Dow	Level (in) 1.37 nloaded to:	Flow (cfs) D Fronted	Velocity (D Yr USB	(fps) Total (cf) Battery
Set flowmeter program and sampler program and sampler program and sampler Start flowmeter program and sampler Verify running Comments: HUT DOWN Personnel: 5T Date/Time 11/20 12:13	rogram parameters program Time 1232 Dow	Level (in) 1.37 nloaded to:	Flow (cfs) D Fronted	Velocity (D Tr USB	(fps) Total (cf) Battery
Set flowmeter program and sampler program and sampler Set logging interval to 1 minute Start flowmeter program and sampler Verify running omments: HUT DOWN Personnel:	rogram parameters program Time 12 32 Dow	Level (in) 1.37 nloaded to:	Flow (cfs) D Fronted	Velocity (D Yr USB onitor flow:	(fps) Total (cf) Battery
Set flowmeter program and sampler program and sampler program and sampler of the start flowmeter program and sampler verify running omments: HUT DOWN Personnel:	rogram parameters program Time 1232 Dow	Level (in) 1.37 mloaded to:	Flow (cfs) D Fronted ntinuing to m Replace flow	Velocity (D T USB	(fps) Total (cf) Battery
Set flowmeter program and sampler program and sampler program and sampler Start flowmeter program and sampler Verify running Tomments: HUT DOWN Personnel:	rogram parameters program Time 12 32 Dow	Level (in) 1.3.7 nloaded to: If co	Flow (cfs)	Velocity (D V USB onitor flow: wmeter batten interval to poity cutoff to	(fps) Total (Total (15 minutes	cf) Battery
Set flowmeter program and sampler program and sampler program and sampler Start flowmeter program and sampler Verify running Tomments: HUT DOWN Personnel:	rogram parameters program - l2 32 Dow	Level (in) 1.37 mloaded to: If co	Flow (cfs)	Velocity (D Y USB onitor flow: wmeter batte ng interval to ocity cutoff to am	(fps) Total (Pry 15 minutes 0 0.02 fps	cf) Battery

O

Com	posite	Sampl	e Col	lection
00111	posite	Sampr		

STATION: ain Personnel: kČ

Date/Time On-Site:

Bottle

Halt sampler program 🖾 Put lid on sample bottle; label sample bottle Sample ID: -WC Approx Sample Volume (mL): Clarity (ex. Clear, Cloudy, Silty): Color (ex. Clear, Gray, Tan, Brown, Black): QA/QC Sample ID: -103 (Time: 1200)

	Subsample Information										
Trigger #	Date/Time	Error Message/ Subsample Result	Trigger #	Date/Time	Error Message/ Subsample Result						
1	11/19/2023 107	Success	13	1 325.	1						
2	1 133	1	14	333							
3	155		15	342							
4	20%	6.1.0.000	16	352							
5	218	10 Harris	17	403							
6	227	20 20	18	415							
7	137	0.0.000	19	430							
8	247	7-99a -	20	454							
9	256	10 A	21	V 515	1						
10	304	*	22	V D CD							
11	311		23								
12	318		24								

Comments:

If sampling is complete:

- D Power off sampler, if separate from flowmeter
- □ Keep flowmeter running
- □ Add ice to sample transport cooler

If continuing sampling (sample bottle change-out):

- Keep flowmeter running Install new 15L bottle, add ice Restart program from beginning Date/Time Restarted: 11/1/1/123
- 0525 Verify running

	Liquid Height vs. Approximate Sample Volume Conversion Chart									
Liquid	Sample	Liquid	Sample	Liquid	Sample	Liquid	Sample	Liquid	Sample	
Height	Volume	Height	Volume	Height	Volume	Height	Volume	Height	Volume	
0.5"	400 mL	3.0"	3500 mL	5.5"	7250 mL	8.0"	11000 mL	10.5"	14750 mL	
1.0"	800 mL	3.5"	4250 mL	6.0"	8000 mL	8.5"		11.0"	15500 ml	
1.5"	1400 mL	4.0"	5000 mL	6.5"	8750 mL	(9.0"	12500 mL	11.5"	16250 mL	
2.0"	2000 mL	4.5"	5750 mL	7.0"	9500 mL	9.5"	13250 mL	After 12"	1" = 1500 mL	
2.5"	2750 mL	5.0"	6500 mL	7.5"	10250 mL	10.0"	14000 mL	Lab min	8.000 mL	

Date/Time On-Site: 11/10/23

Bottle <u>7</u> of <u>3</u>

 □ Halt Sampler program

 □ Put lid on sample bottle; label sample bottle

 Sample ID:
 2.3 11 9 - 12 -WC

 Approx Sample Volume (mL):
 1.4750

 Clarity (ex. Clear, Cloudy, Silty):
 Cloudy

 Color (ex. Clear, Gray, Tan, Brown, Black):
 0rown

 QA/QC Sample ID:
 -103

Subsample Information									
Trigger #	Date/Time	Sampler Message/ Subsample Result	Trigger #	Date/Time	Sampler Message/ Subsample Result				
1	11/19/23 535	Success	13	1 701					
2	1 541	-	14	730					
3	547		15	-722					
4	553	· · · · · · · · · · · · · · · · · · ·	16	753					
5	559		17	759					
6	605		18	805					
7	610		19	810					
8	615		20	815					
9	620		21	820					
10	626		22	824	e				
11	634		23	828					
12	645		24	V 832					

Comments:

STATION:

ersonnel: Ki

Veen flowmator running
_ keep now meter running
Install new 15L bottle; add ice
Restart program from beginning
Date/Time Restarted:
□ Verify running

	11-12-12-1-1-1		Liquid Height	vs. Approxim	ate Sample Volu	ume Conver	sion Chart		
Liquid Height	Sample	Liquid Height	Sample Volume	Liquid Height	Sample Volume	Liquid Height	Sample Volume	Liquid Height	Sample Volume
0.5"	400 mL	3.0"	3500 mL	5.5"	7250 mL	8.0"	11000 mL	(10.5"	14750 mL
1.0"	800 mL	3.5"	4250 mL	6.0"	8000 mL	8.5"	11750 mL	11.0"	15500 mL
1.5"	1400 mL	4.0"	5000 mL	6.5"	8750 mL	9.0"	12500 mL	11.5"	16250 mL
2.0"	2000 mL	4.5"	5750 mL	7.0"	9500 mL	9.5"	13250 mL	After 12"	1" = 1500 mL
2 5"	2750 ml	5.0"	6500 mL	7.5"	10250 mL	10.0"	14000 mL	Lab min	8,000 mL

STATION: M Personnel:

Bottle 3 Date/Time On-Site: 11/19/23

of

Halt Sampler program			
Put lid on sample bottle; label sample bottle			
Sample ID:	13119-12	-WC	
Approx Sample Volume (mL):	8750ml		
Clarity (ex. Clear, Cloudy, Silty):	Cloudy		
Color (ex. Clear, Gray, Tan, Brown, Black):	Tan		
QA/QC Sample ID:		-103	(Time: 1200)

	Subsample Information									
Trigger #	Date/Time	Sampler Message/ Subsample Result	Trigger #	Date/Time	Sampler Message/ Subsample Result					
1	11/19/23 923	Intra 923 Success		1127	Success					
2	1 928		14	1210						
3	934		15	1442	1					
4	940		16	Ψ						
5	947		17							
6	955		18							
7	1004		19							
8	103		20							
9	1023		21							
10	1034		22							
11	1 1047		23							
12	1.103	\checkmark	24							

Comments:

If sampling is complete:

- Dever off sampler
- Verify flowmeter is running Add ice to sample transport cooler
- Complete COC form; arrange transport to lab
- If continuing sampling (sample bottle change-out):
 - □ Keep flowmeter running
 - □ Install new 15L bottle; add ice
 - □ Restart program from beginning
 - Date/Time Restarted: _____
 - U Verify running

	Liquid Height vs. Approximate Sample Volume Conversion Chart											
Liquid	Sample	Liquid	Sample	Liquid	Sample	Liquid	Sample	Liquid	Sample			
Height	Volume	Height	Volume	Height	Volume	Height	Volume	Height	Volume			
0.5"	400 mL	3.0"	3500 mL	5.5"	7250 mL	8.0"	11000 mL	10.5"	14750 mL			
1.0"	800 mL	3.5"	4250 mL	6.0"	8000 mL	8.5"	11750 mL	11.0"	15500 mL			
1.5"	1400 mL	4.0"	5000 mL	6.5"	8750 mL	9.0"	12500 mL	11.5"	16250 mL			
2.0"	2000 mL	4.5"	5750 mL	7.0"	9500 mL	9.5"	13250 mL	After 12"	1" = 1500 mL			
2.5"	2750 mL	5.0"	6500 mL	7.5"	10250 mL	10.0"	14000 ml	Lab min	8.000 ml			

Grab Sample Data Form

	Mai	<u>م</u>			
Personnel: _	ST,	ILC.	Date/Time On-Site:	11/19/2023	orH

	Flow Meter Current Status										
Time	Level (in)	Flow (cfs)	Velocity (fps)	Battery (V)	Flow Start (date/time)	Rainfall (in)					
1.11	367	140.41	0.91	12.6							

Grab Information									
	Sample ID	Date	Time	Labeled?					
Site E.Coli	231119-12-WG	+:+9=11/19	23 1:19	4					
Field Duplicate E.Coli	-101	81							
Field Blank E.Coli	-001								

*Note: time on bottle for QC samples is 1200

	Field Parameters										
Meter number	Time	Temp (C)	D.O. (mg/L)	рН (S.U.)	SpCond (uS/cm)						
MPH	1:22	10:54	9.48	7.64	174.43						

	Sampler Current Status
First Subsample Date/Time	11/19/2023 1:07
Last Subsample Date/Time	[1/19/2023 1:07
# of Subsamples taken	1

Comments:

Revised 210924 TL

Set Up/ Shut Down Form - ISCO

	Time	Lovel (in)	Flow (cfs)	Velocity (fps)	Battery (V)
ersonnel: KC, ST	-	Lever (iii)		velocity (ips)	Dattery (v)
to/Timo	1541	5-43	0.23	-0.291	11.78
-site: 11/17/23 1531					
	E	nable Condition:	6.96		
	Elo	Hysteresis:	20-45, 1C	NODEE	
			AN L		
Perform decon. cycle Install 15L sample bottle, with ice Leave bottle lid at site, in a clean re-sea Set sampler program parameters Check date/time on sampler Verify all cable and tubing connections Verify sampler program is running	alable plastic bag	Change L Change L Velocity, Tor S Enable S equation	data and review Vireless Power Data Storage Ra tal Flow, and Flo ampler: On Trig Dier Pacing to Fl	v recent flow hist Control to Storm tes to 1 minute fo ow Rate ger, and set Samp ow Paced, and se	ory Event or Level, oler Enable t trigger
imments:					
HUT DOWN	Time	Level (in)	Flow (cfs) Velocity (fp:	s) Battery (V
IUT DOWN Personnel:	Time	Level (in)	Flow (cfs) Velocity (fp:	s) Battery (V
HUT DOWN Personnel:	Time	Level (in)	Flow (cfs 1.272 D: Steven) Velocity (fp:	s) Battery (V 12,12
HUT DOWN Personnel: <u>ST</u> Date/Time On-Site: <u>11/20</u> 11:47	Time	Level (in) 5. 2 Downloaded to	Flow (cfs 1.272 D: Steven) Velocity (fp: 1.716 5 US B	s) Battery (V 12,12
HUT DOWN Personnel:	Time	Level (in) 5.2 Downloaded to Downloaded to Direct or Retrieve Change to Velocity, To Direct Si	Flow (cfs 1.2.72 5. Steven 5.	Velocity (fp: 1.716 3 USB ructions, if needed time $11/27$ Control to Dry We tes to 15 minutes by Rate	s) Battery (V 12.12 d) 5.58 Pm eather for Level,
HUT DOWN Personnel:	Time	Level (in) 5.2 Downloaded to Downloaded to Direct or Retrieve S Change V Velocity, To B Enable S	Flow (cfs 1.2.72 5. Steven to Flowlink Instr Remote; Date/ data Vireless Power Data Storage Ra tal Flow, and Fl- ampler: Never	Velocity (fp: 1.716 3 USB Fuctions, if needed time $11/27$ Control to Dry We tes to 15 minutes tow Rate	s) Battery (V 12.12 d) 5.58 Pm eather for Level,
HUT DOWN Personnel:	Time	Level (in) 5.2 Downloaded to Downloaded to Direct or Retrieve S Change to Velocity, To Enable Si Didn't Change to Change to Velocity, To	Flow (cfs 1.2.72 5. Steven to Flowlink Instr Remote; Date/ data Wireless Power Data Storage Ra tal Flow, and Flow ampler: Never	Velocity (fp: 1.716 5 USB Fuctions, if needed time $11/27$ 3 Control to Dry Wates to 15 minutes to 8 Rate Hings back	s) Battery (V 12.12 d) d) s. S& Pm eather for Level, for Level,
HUT DOWN Personnel: Date/Time On-Site: II: 47 n-Site Replace flowmeter battery Remove battery from sampler omments:	Time 11: 54	Level (in) 5.2 Downloaded to Downloaded to Direct or Retrieve S Change To Velocity, To Enable St Dictnit Change To Change To Velocity, To Dictnit Change To Change To Dictnit Change To Change To Ch	Flow (cfs 1.2.72 D: Steven So Flowlink Instr Remote; Date/ data Wireless Power Data Storage Ra tal Flow, and Flow ampler: Never Data Storage Set Dathery Wo	Velocity (fp: 1.716 5 USB Tuctions, if needed time <u>11/27</u> Control to Dry We tes to 15 minutes bow Rate Hings back 5 dead an	s) Battery (V 12.12 d) 12.58 pm eather for Level, for Level, d the la

C-98

Revised 220727 TL

Bottle _____ of $\underline{\mathcal{U}}$

STATION: Americana Personnel:

Date/Time On-Site: _

🕄 Halt sampler program			
CPut lid on sample bottle; label sample bottle			
Sample ID:	23119-14	-WC	
Approx Sample Volume (mL):	11750 ml		
Clarity (ex. Clear, Cloudy, Silty):	Cloudy		
Color (ex. Clear, Gray, Tan, Brown, Black):	Tan/gelion		
QA/QC Sample ID:	. /	-103	(Time: 1200)

		Subsamp	ole Informatio	n	
Trigger #	Date/Time	Error Message/ Subsample Result	Trigger #	Date/Time	Error Message/ Subsample Result
1	11/11/23 132	Success	13	320	1
2	1 149		14	32.6	Contract of the second
3	204		15	332	
4	214		16	338	e Anto Lec e
5	27.3	2	17	344	
6	231	ĸ	18	351	22
7	1.39	5 / 9 / 9 / 9 / 9	19	357	and the second se
8	246		20	V 405	
9	254	3	21		144 N
10	301	¥	22		
11	307		23		
12	314	Ę	24		

Comments:

If sampling is complete:

- □ Power off sampler, if separate from flowmeter
- □ Keep flowmeter running
- □ Add ice to sample transport cooler

- If continuing sampling (sample bottle change-out):
 - W Install new 15L bottle; add ice
 - B Restart program from beginning
 - Date/Time Restarted: 11/19/23 (541)
 - 🔁 Verify running

			Liquid Height	vs. Approxim	ate Sample Vol	ume Conver	sion Chart		
Liquid	Sample	Liquid	Sample	Liquid	Sample	Liquid	Sample	Liquid	Sample
Height	Volume	Height	Volume	Height	Volume	Height	Volume	Height	Volume
0.5"	400 mL	3.0"	3500 mL	5.5"	7250 mL	8.0"	11000 mL	10.5"	14750 mL
1.0"	800 mL	3.5"	4250 mL	6.0"	8000 mL	8.5"	11750 mL	11.0"	15500 mL
1.5"	1400 mL	4.0"	5000 mL	6.5"	8750 mL	9.0"	12500 mL	11.5"	16250 mL
2.0"	2000 mL	4.5"	5750 mL	7.0"	9500 mL	9.5"	13250 mL	After 12"	1" = 1500 mL
2.5"	2750 mL	5.0"	6500 mL	7.5"	10250 mL	10.0"	14000 mL	Lab min	8.000 ml

STATION: AMELICOUNA

Color (ex. Clear, Gray, Tan, Brown, Black):

QA/QC Sample ID:

Date/Time On-Site: _

Bottle 1 of 4

-103

(Time: 1200)

rsonnel: □ Halt Sampler program D Put lid on sample bottle; label sample bottle 23119 -WC 14-Sample ID: ~ Approx Sample Volume (mL): Clarity (ex. Clear, Cloudy, Silty):

1234		Subsamp	le Information		
Trigger #	Date/Time	Sampler Message/ Subsample Result	Trigger #	Date/Time	Sampler Message/ Subsample Result
1	11/19/23 412	Success.	13	668	4
2	1 420	A	14	605	
3	405	and the second s	15	60%	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
4	438	(1997)	16	613	1
5	449	2	17	617	465 ×
6	501	Ĕ.	18	621	
7	1513		19	6220	
8	675		20	iu31	· · · ·
9	533		21	1036	ž + 2 2 - Cohomber ed
10	540	9. 7. 9,	22	10441	2-2-3-
11	541		23	1048	a free any
12	562		24	1 655	- Vietness

Comments:

If sampling is complete:	If continuing sampling (sample bottle change-out):
Power off sampler	Keep flowmeter running
Verify flowmeter is running	Install new 15L bottle; add ice
Add ice to sample transport cooler	Restart program from beginning
Complete COC form; arrange transport to lab	Date/Time Restarted:0 SOM
	Verify running

	THAT COLOR		Liquid Height	vs. Approxima	ate Sample Vol	ume Conver	sion Chart		
Liqui	id Sample	Liguid	Sample	Liquid	Sample	Liquid	Sample	Liquid	Sample
Heig	ht Volume	Height	Volume	Height	Volume	Height	Volume	Height	Volume
0.5	400 mL	3.0"	3500 mL	5.5"	7250 mL	8.0"	11000 mL	10.5"	14750 mL
1.0'	" 800 mL	3.5"	4250 mL	6.0"	8000 mL	8.5"	11750 mL	11.0"	15500 mL
1.5'	' 1400 mL	4.0"	5000 mL	6.5"	8750 mL	9.0"	12500 mL	11.5"	16250 mL
2.0'	" 2000 mL	4.5"	5750 mL	7.0"	9500 mL	9.5	13250 m	After 12"	1" = 1500 mL
2.5'	" 2750 ml	5.0"	6500 mL	7.5"	10250 mL	10.0"	14000 mL	Lab min	8,000 mL

Composite Sample Collection Bottle 3

STATION: Personnel:

Date/Time On-Site: 11/19/23

🔁 Halt Sampler program Put lid on sample bottle; label sample bottle Sample ID: 231119-LL -WC Approx Sample Volume (mL): Clarity (ex. Clear, Cloudy, Silty): Color (ex. Clear, Gray, Tan, Brown, Black): ar QA/QC Sample ID: -103 (Time: 1200)

		Subsamp	le Information	1	
Trigger #	Date/Time	Sampler Message/ Subsample Result	Trigger #	Date/Time	Sampler Message/ Subsample Result
1 11	11238041015	Success	13	1 857	Success
2	809	1	14	901	1
3	814	A CONTRACTOR OF	15	905	
4	\$14		16	909	
5	813		17	913	
6	827	97 E 7** 9	18	918	average
7	832	3	19	922	
8	836	1991 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	20	927	
9	840	1 4, 4 K	21	932	
10	844	4 × 10	22	936	a de la companya de la
11	348		23	941	
12	\$51		24	V947	an interest

Comments:

If sampling is complete:

- D Power off sampler
- □ Verify Flowmeter is running
- □ Add ice to sample transport cooler
- □ Complete COC form; arrange transport to lab
- If continuing sampling (sample bottle change-out):

 - Keep flowmeter running Install new 15L bottle; add ice Restart program from beginning
 - Date/Time Restarted: 11923 DID
 - 🗗 Verify running

			Liquid Height	s. Approxim	ate Sample Vol	ume Convers	sion Chart		
Liquid	Sample	Liquid	Sample	Liquid	Sample	Liquid	Sample	Liquid	Sample
Height	Volume	Height	Volume	Height	Volume	Height	Volume	Height	Volume
0.5"	400 mL	3.0"	3500 mL	5.5"	7250 mL	8.0"	11000 mL	10.5"	14750 mL
1.0"	800 mL	3.5"	4250 mL	6.0"	8000 mL	8.5"	11750 mL	11.0"	15500 mL
1.5"	1400 mL	4.0"	5000 mL	6.5"	8750 mL	9.0"	12500 mL	11.5"	16250 mL
2.0"	2000 mL	4.5"	5750 mL	7.0"	9500 mL	(9.5"	13250 mL	After 12"	1" = 1500 mL
2.5"	2750 mL	5.0"	6500 mL	7.5"	10250 mL	10.0	14000 mL	Lab min	8.000 mL

nna STATION: Personnel: _

Date/Time On-Site:

Bottle

🕩 Halt sampler program 😰 Put lid on sample bottle; label sample bottle -WC Sample ID: Approx Sample Volume (mL): 3 Clarity (ex. Clear, Cloudy, Silty): Color (ex. Clear, Gray, Tan, Brown, Black): -103 (Time: 1200) QA/QC Sample ID:

		Subsam	ole Informatio	on	
Trigger #	Date/Time	Error Message/ Subsample Result	Trigger #	Date/Time	Error Message/ Subsample Result
1	11/19/23 1014	Success	13	1/19/23 1/47	Success
2	1 1020	1	14	1201	
3	1026		15	1215	
4	1032		16	123	
5	1039		17	1300	
6	1045		18	1320	
7	1052		19	1342	
8	1100		20	1407	\checkmark
9	1108		21		
10	1116		22		
11	1126		23		
12	V 1136	Ψ	24		

Comments:

If sampling is complete:

2 Power off sampler, if separate from flowmeter Keep flowmeter running

- Add ice to sample transport cooler

If continuin	g sampling	(sample bottle change-out):
		14 C

- □ Keep flowmeter running
- □ Install new 15L bottle; add ice
- Restart program from beginning
- Date/Time Restarted: ____
- Verify running

			Liquid Height	s. Approxim	ate Sample Vol	ume Convers	sion Chart		
Liquid	Sample	Liquid Height	Sample	Liquid Height	Sample Volume	Liquid Height	Sample Volume	Liquid Height	Sample Volume
0.5"	400 ml	3.0"	3500 mL	5.5"	7250 mL	8.0"	11000 mL	10.5"	14750 mL
1.0"	800 mL	3.5"	4250 mL	6.0"	8000 mL	8.5"	11750 mL)	11.0"	15500 mL
1.5"	1400 mL	4.0"	5000 mL	6.5"	8750 mL	9.0"	12500 mL	11.5"	16250 mL
2.0"	2000 mL	4.5"	5750 mL	7.0"	9500 mL	9.5"	13250 mL	After 12"	1" = 1500 mL
2 5"	2750 mL	5.0"	6500 mL	7.5"	10250 mL	10.0"	14000 mL	Lab min	8,000 mL

Grab Sample Data Form

rsonnel: _	KC,ST		Date/Tir	me On-Site: <u>//</u>	119125 141	<u> </u>
		Flo	w Meter Curre	ent Status		
Time	Level	Flow (cfs)	Velocity (fps)	Battery (V)	Flow Start (date/time)	Rainfall (in)

	Gra	ab Info	rmation		
A	Sample ID		Date	Time	Labeled?
Site E.Coli	-20119 - 14	-WG	11/19/2.3	153) M
Field Duplicate E.Coli	13110-14	-101	11/19/13	15%	-92
Field Blank E.Coli	131119-14	-001	11/19/23	159	

*Note: time on bottle for QC samples is 1200

		Field Par	ameters		
Meter number	Time	Temp (C)	D.O. (mg/L)	рН (S.U.)	SpCond (uS/cm)
MPIL	0151	14,16			

and the second	Sampler C	Current Status
First Subsample Date/Time	11/19/23	0132
Last Subsample Date/Time	11/9/23	0132
# of Subsamples taken	1	

-Comments:

.0

Juld parameters (DO, PH, & cond) accidentally not recorded in field.

Revised 210924 TL

Set Up/ Shut Down Form – HACH (Lucky, Main, AS_6)

SET UP						
NIC ST	Tir	me Lev	el (in)	Flow (cfs)	Velocity (fps)	Battery (V)
Personnel: <u>VLJ ST</u>	1731		5	0.0	0.0	12.2
Date/Time		0.				*
On-Site: 11/17/23 +677		E. H. Ou	l'al - u au M	-lasity Cutoff	10.02	
		Enable Con	dition or V	Deadband		
			Tr	igger Volume	221 cf	
Set logging interval to 1 minute Start flowmeter program and sampler Verify running	program					
Sample volvine set h	o 490ml du	e to Cali	bration	n issures		
Sample volvine set h	o 490ml du	e to Cali	bration	n issures		
Sample volume set h	o 490ml du Time	e to Cali	bration Flow (cf	s) Velocity	/ (fps) Total (cf) Battery (\
Sample volvine set h HUT DOWN Personnel:	- Time	e to Cali Level (in) 0.0	Flow (cf	s) Velocity	y (fps) Total (cf) Battery (\ (Z.§
HUT DOWN Personnel:	- Time 11:11 Do	Level (in) 0.0 wmloaded to:	Flow (cf O.O Rugg	s) Velocity O.C	/ (fps) Total (cf) Battery (\ (2.8
HUT DOWN Personnel: <u>ST</u> Date/Time <u>II/20 II=3</u>	- <u>Time</u> 11:11 Do	Level (in) 0.0 wnloaded to:	Flow (cf O.O Rugge	s) Velocity O.C	y (fps) Total (cf) Battery (\ (Z.g
HUT DOWN Personnel:	c 490ml du - Time 11:11 Do	Level (in) 0.0 Winloaded to:	Flow (cf O.O Rugge Intinuing to Replace	s) Velocity O.C C C C C C C C C C C C C C C C C C C	r (fps) Total (cf) Battery (\ (2.8

Comments:

the states

STATION: Personnel:

Date/Time On-Site: 11/19/23

Bottle

Halt sampler program □ Put lid on sample bottle; label sample bottle 231119 -206 -WC Sample ID: Approx Sample Volume (mL): Clarity (ex. Clear, Cloudy, Silty): Color (ex. Clear, Gray, Tan, Brown, Black): (Time: 1200) QA/QC Sample ID: -103

Subsample Information								
Trigger #	Date/Time	Error Message/ Subsample Result	Trigger #	Date/Time	Error Message/ Subsample Result			
1	11/19/23 314		13	540				
2	1 327		14	549	6			
3	340		15	556				
4	352		16	1002				
5	403		17	1008				
6	414		18	613				
7	425		19	618				
8	437		20	622				
9	450		21	626				
10	503		22	630				
11	517		23	634				
12	529		24	V 637				

Comments:

Here at 2:20 but not enough flow for Events sample.

If sampling is complete:

- D Power off sampler, if separate from flowmeter
- □ Keep flowmeter running
- □ Add ice to sample transport cooler

If continuing sampling (sample bottle change-out): 🕅 Keep flowmeter running

- A Install new 15L bottle, add ice
- 🕱 Restart program from beginning
- Date/Time Restarted: 1114123 (42
- Verify running

Liquid Height vs. Approximate Sample Volume Conversion Chart									
Liquid	Sample	Liquid	Sample	Liquid	Sample	Liquid	Sample	Liquid	Sample
Height	Volume	Height	Volume	Height	Volume	Height	Volume	Height	Volume
0.5"	400 mL	3.0"	3500 mL	5.5"	7250 mL	8.0"	11000 mL	10.5"	14750 mL
1.0"	800 mL	3.5"	4250 mL	6.0"	8000 mL	8.5"	11750 mL	11.0"	15500 mL
1.5"	1400 mL	4.0"	5000 mL	6.5"	8750 mL	9.0"	12500 mL	11.5"	16250 mL
2.0"	2000 mL	4.5"	5750 mL	7.0"	9500 mL	9.5"	13250 mL	After 12"	1" = 1500 mL
2.5"	2750 mL	5.0"	6500 mL	7.5"	10250 mL	10.0"	14000 mL	Lab min	8,000 mL

Bottle 7 Date/Time On-Site:

STATION: Personnel:

1			
🗖 Halt Sampler program			
Put lid on sample bottle; label sample bottle			
Sample ID:	231119-206	-WC	
Approx Sample Volume (mL):	17750		
Clarity (ex. Clear, Cloudy, Silty):	Silty		
Color (ex. Clear, Gray, Tan, Brown, Black):	Brown		
QA/QC Sample ID:		-103	(Time: 1200)

Composite Sample Collection

	Subsample Information						
Trigger #	Date/Time	Sampler Message/ Subsample Result	Trigger #	Date/Time	Sampler Message/ Subsample Result		
1	11/19/23 644	Sucall	13				
2	1 650	distr envor	14				
3	6158	Success	15				
4	703	Succerts	16				
5	788	1.	17				
6	713	<u> </u>	18				
7	719		19				
8	725		20		-		
9	733		21				
10	+ 740	Distr. envor	22				
11			23				
12			24				

Comments:

"Bittle computely full + water in tubing Battery was dead. Replaced battery stastarted

If sampling is complete:

- □ Power off sampler
- □ Verify flowmeter is running
- □ Add ice to sample transport cooler
- Complete COC form; arrange transport to lab
- If continuing sampling (sample bottle change-out):
 - Keep flowmeter running

 - A Install new 15L bottle; add ice Restart program from beginning
 - 826 Date/Time Restarted: 1119123
 - Verify running

10.00			Liquid Height	s. Approxim	ate Sample Volu	ume Conver	sion Chart		
Liquid Height	Sample Volume								
0.5"	400 mL	3.0"	3500 mL	5.5"	7250 mL	8.0"	11000 mL	10.5"	14750 mL
1.0"	800 mL	3.5"	4250 mL	6.0"	8000 mL	8.5"	11750 mL	11.0"	15500 mL
1.5"	1400 mL	4.0"	5000 mL	6.5"	8750 mL	9.0"	12500 mL	11.5"	16250 mL
2.0"	2000 mL	4.5"	5750 mL	7.0"	9500 mL	9.5"	13250 mL	After 12"	1" = 1500 mL)
2.5"	2750 ml	5.0"	6500 ml	7.5"	10250 ml	10.0"	14000 mL	Lab min	8,000 mL

Composite Sample Collection Bottle_____ of ____

Date/Time On-Site: _

🔊 Halt Sampler program			
Put lid on sample bottle; label sample bottle			
Sample ID:	231119-206	-WC	
Approx Sample Volume (mL):	12500		
Clarity (ex. Clear, Cloudy, Silty):	Cloudy		
Color (ex. Clear, Gray, Tan, Brown, Black):	Brown		
QA/QC Sample ID:		-103	(Time: 1200)

Subsample Information								
Trigger #	Date/Time	Sampler Message/ Subsample Result	Trigger #	Date/Time	Sampler Message/ Subsample Result			
1	11/19/23 821		13	1 910	λ.			
2	1 826		14	914				
3	831		15	915				
4	836		16	922				
5	841		17	924				
6	845		18	229				
7	849		19	735				
8	852		20	936				
9	856		21	938				
10	859		22	941				
11	903		23	943				
12	907		24	V 946				

Comments:

If sampling is complete:

- □ Power off sampler
- □ Verify Flowmeter is running
- □ Add ice to sample transport cooler
- Complete COC form; arrange transport to lab
- If continuing sampling (sample bottle change-out):
 - Keep flowmeter running
 - Install new 15L bottle; add ice
 - Restart program from beginning

Date/Time Restarted: _____

Verify running

			Liquid Height	vs. Approxim	ate Sample Volu	ume Conver	sion Chart		
Liquid	Sample	Liquid	Sample	Liquid	Sample	Liquid	Sample	Liguid	Sample
Height	Volume	Height	Volume	Height	Volume	Height	Volume	Height	Volume
0.5"	400 mL	3.0"	3500 mL	5.5"	7250 mL	8.0"	11000 mL	10.5"	14750 mL
1.0"	800 mL	3.5"	4250 mL	6.0"	8000 mL	8.5"	11750 mL	11.0"	15500 mL
1.5"	1400 mL	4.0"	5000 mL	6.5"	8750 mL	(9.0"	12500 mL	11.5"	16250 mL
2.0"	2000 mL	4.5"	5750 mL	7.0"	9500 mL	9.5"	13250 mL	After 12"	1" = 1500 mL
2.5"	2750 mL	5.0"	6500 mL	7.5"	10250 ml	10.0"	14000 ml	Lab min	8 000 ml

1.	inc	
STATION:	AS 6	
Personnel: 1	1C.51	

Date/Time On-Site: 11/19 23

of

Hait sampler program		
Put lid on sample bottle; label sample bottle		
Sample ID:	-WC	
Approx Sample Volume (mL):	1,000	
Clarity (ex. Clear, Cloudy, Silty):	Cloudy	
Color (ex. Clear, Gray, Tan, Brown, Black):	Brown	
QA/QC Sample ID:	-103	(Time: 1200)

Subsample Information								
Trigger #	Date/Time Error Message/ Subsample Result		Trigger #	Date/Time	Error Message/ Subsample Result			
1	11/19/23953	3 No laviden		1649	Success			
2	1.957	Success	14	1054				
3	10.01		15	11:01				
4	10 06		16	1107				
5	1010		17	1114				
6	1014		18	1121				
7	1019		19	11:28				
8	1024		20	1136				
9	1029		21	1146				
10	1034		22	1156				
11	1038		23	1209				
12	1043		24	4221	\checkmark			

Comments:

If sampling is complete:

Power off sampler, if separate from flowmeter

Add ice to sample transport cooler

If continuing sampling (sample bottle change-out):

- Keep flowmeter running
- Install new 15L bottle; add ice
- □ Restart program from beginning
- Date/Time Restarted: ____
- Verify running

	1, - 1		Liquid Height	s. Approxim	ate Sample Volu	ime Conver	sion Chart		
Liquid Height	Sample Volume								
0.5"	400 mL	3.0"	3500 mL	5.5"	7250 mL	(8.0"	11000 mL	10.5"	14750 mL
1.0"	800 mL	3.5"	4250 mL	6.0"	8000 mL	8.5"	11750 mL	11.0"	15500 mL
1.5"	1400 mL	4.0"	5000 mL	6.5"	8750 mL	9.0"	12500 mL	11.5"	16250 mL
2.0"	2000 mL	4.5"	5750 mL	7.0"	9500 mL	9.5"	13250 mL	After 12"	1" = 1500 mL
2.5"	2750 mL	5.0"	6500 mL	7.5"	10250 mL	10.0"	14000 mL	Lab min	8,000 mL

Grab Sample Data Form

STATION: AS_6 Date/Time On-Site: 11/19/23 0613 Personnel: KC, ST

		Flow	Meter Curr	ent Status		
Time	Level (in)	Flow (cfs)	Velocity (fps)	Battery (V)	Flow Start (date/time)	Rainfall (in)
622	5.794	0.90	1.62	11.7		

Grab Information										
	Sample ID	Date	Time	Labeled?						
Site E.Coli	231119-206 -WG	11/19/23	622							
Field Duplicate E.Coli	-101									
Field Blank E.Coli	-001									

*Note: time on bottle for QC samples is 1200

Field Parameters										
Meter number	Time	Temp (C)	D.O. (mg/L)	рН (S.U.)	SpCond (uS/cm)					
MPII	620	9.04	9.44	7.18	184,28					

Sampler Current Status									
First Subsample Date/Time	11/19/2023 314								
Last Subsample Date/Time	11/19/2023 622								
# of Subsamples taken	10								

Comments:

£

Revised 210924 TL

Attachment D: Storm Event Analytical Reports

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Samples in this Report

Lab ID	Sample	Sample Description	Matrix Qualifiers	Date Sampled	Date Received
AC00323-01	ACST1B	231119-03-WG	Water	11/19/2023	11/19/2023
AC00323-02	ACST1B	231119-11-WG	Water	11/19/2023	11/19/2023
AC00323-03	ACST1B	231119-12-WG	Water	11/19/2023	11/19/2023
AC00323-04	ACST1B	231119-14-WG	Water	11/19/2023	11/19/2023
AC00323-05	ACST1B	231119-14-101	Water	11/19/2023	11/19/2023
AC00323-06	ACST1B	231119-14-001	Water	11/19/2023	11/19/2023

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Analysis Report

Location:	ACST1	В				Location Description:	231119-03	3-WG			
Date/Time Collected	: 11/19/2	2023 01:38									
Lab Number:	AC003	23-01				Sample Collector:	GK				
Sample Type:	Grab					Sample Matrix:	Water				
Analyte Name	Batch	Result	Units	Adjusted MDL *	Method MDL	Analysis Method Reference	Prepared	Analyz	ed	Analyst Initials	Qualifier
Microbiology E. Coli	B234656	2.0 M	PN/100 mL	1.0	1.0	IDEXX - Colilert	11/19/23 08:58	11/20/23	9:22	SMC	
Wet Chemistry Chlorine Screen	B234655	Absent				SM 4500-CL G-2000 mod	11/19/23	11/19/23	8:36	ASE	

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Analysis Report

Location:	ACST1	В				Location Description:	231119-11	-WG			
Date/Time Collected	: 11/19/2	2023 02:39									
Lab Number:	AC003	23-02				Sample Collector:	GK				
Sample Type:	Grab					Sample Matrix:	Water				
Analyte Name	Batch	Result	Units	Adjusted MDL *	Method MDL	Analysis Method Reference	Prepared	Analyz	ed	Analyst Initials	Qualifier
Microbiology E. Coli	B234656	99.0 M	PN/100 mL	1.0	1.0	IDEXX - Colilert	11/19/23 08:58	11/20/23	9:22	SMC	
Wet Chemistry Chlorine Screen	B234655	Absent				SM 4500-CL G-2000 mod	11/19/23	11/19/23	8:36	ASE	

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Analysis Report

Location:	ACST1	IB				Location Description:	231119-12	2-WG			
Date/Time Collected	: 11/19/2	2023 01:19									
Lab Number:	AC003	23-03				Sample Collector:	S.T				
Sample Type:	Grab					Sample Matrix:	Water				
	Datab	Decult		Adjusted	Method	Analysis Method	Drenered	Anolum		Analyst	Qualifiar
Analyte Name	Batch	Result	Units	MDL "	WDL	Reference	Prepared	Analyz	ea	initiais	Quaimer
Microbiology											
E. Coli	B234656	30.9M	PN/100 mL	1.0	1.0	IDEXX - Colilert	11/19/23 08:58	11/20/23	9:22	SMC	
Wet Chemistry											
Chlorine Screen	B234655	Absent				SM 4500-CL G-2000 mod	11/19/23	11/19/23	8:36	ASE	

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Analysis Report

Location:	ACST1	IB				Location Description:	231119-14	4-WG			
Date/Time Collected	d: 11/19/2	2023 01:53									
Lab Number:	AC003	23-04				Sample Collector:	S.T				
Sample Type:	Grab					Sample Matrix:	Water				
Analyte Name	Batch	Result	Units	Adjusted MDL *	Method MDL	Analysis Method Reference	Prepared	Analyz	zed	Analyst Initials	Qualifier
Microbiology E. Coli	B234656	1340.0M	PN/100 mL	100.0	1.0	IDEXX - Colilert	11/19/23 08:58	11/20/23	9:22	SMC	D
Wet Chemistry Chlorine Screen	B234655	Absent				SM 4500-CL G-2000 mod	11/19/23	11/19/23	8:36	ASE	

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Analysis Report

Location:	ACST1	IB				Location Description:	231119-14	4-101			
Date/Time Collected	l: 11/19/2	2023 12:00									
Lab Number:	AC003	23-05				Sample Collector:	S.T				
Sample Type:	Grab					Sample Matrix:	Water				
Analyte Name	Batch	Result	Units	Adjusted MDL *	Method MDL	Analysis Method Reference	Prepared	Analyze	əd	Analyst Initials	Qualifier
Microbiology E. Coli	B234656	866.4 M	PN/100 mL	1.0	1.0	IDEXX - Colilert	11/19/23 08:58	11/20/23	9:22	SMC	
Wet Chemistry Chlorine Screen	B234655	Absent				SM 4500-CL G-2000 mod	11/19/23	11/19/23	8:36	ASE	

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Analysis Report

Location:	ACST1	В				Location Description:	231119-1	4-001				
Date/Time Collected	: 11/19/2	2023 12:00										
Lab Number:	AC003	23-06				Sample Collector:	S.T					
Sample Type:	Grab					Sample Matrix:	Water					
Analyte Name	Batch	Result	Units	Adjusted	Method	Analysis Method Reference	Prepared	Analyzed	Analyst	Qualifier		
	Baton						···opurou	,		quannoi		
Microbiology E. Coli	B234656	<1.0M	PN/100 mL	1.0	1.0	IDEXX - Colilert	11/19/23 08:58	11/20/23 9:2	2 SMC	U		
Wet Chemistry												
Chlorine Screen	B234655	Absent				SM 4500-CL G-2000 mod	11/19/23	11/19/23 8:3	6 ASE			

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Quality Control Report

Analyte Name	Method Blank	Units	% Recovery	Recovery Limits	RPD	RPD Limit	Analyzed	Analyst Initials	Qualifier
Microbiology	Diam								
Batch: B234656 Blank (B234656-BLK1)	Absent						11/20/2023	SMC	
LCS (B234656-BS1) E. Coli				Present			11/20/2023	SMC	
Duplicate (B234656-DUP2) E. Coli	Source ID: AC003	323-04RE	1		Pass	128	11/20/2023	SMC	

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Notes and Definitions

ltem	Definition						
D	Data reported from a dilution						
U	Analyte included in the analysis, but not detected						

Method Reference Acronyms

Colilert	Colilert, IDEXX Laboratories, Inc.
EPA	Manual of Methods for Chemical Analysis of Water and Wastes, USEPA
GS	USGS Techniques of Water-Resources Investigations
HH	Hach Spectrophotometer Procedures Manual
SM	Standard Methods for the Examination of Water and Wastewater
SW	Test methods for Evaluating Solid Waste, SW-846

for JFK

Janet Finegan-Kelly Water Quality Laboratory Manager

Stephen Quintero or Azubike Emenari QA/QC Coordinator

C-120
Ada Co	unty Hig	jhway [District					******			T			*)*********						*******		**********
Attn: Stev 3775 Ada Garden C Tel. (208) Fax (208) Purchase Project: Sampler(s	ren Turner ims Street ity, Idaho & 387–6269 387–6391 Order: s):	33714—64)	418 630656 Storma Steven Krister Hanna Gabrie	228 Vater-PI D. Tuyy D. C. Lais Zh. Joh Il a Ka	ur holm moa		Ø	Matrix	Ţ		10 B	00		1.2		e - EPA 365.1	0 - EPA 200.8 3. Zn - EPA 200.8	A 245.2	Colliert	A 200.7	A 353.2	NH ₃ - D
Lab#	Begin Date	End Date	Begin Time	End Time	Sample Ide	entification	Sampler Initia	Water	Grab	Composite	BOD ₆ - SM 52	COD - Hach 80	TSS - SM 2540	TKN - EPA 35	TP - EPA 200.7	Orthophosphat	Diss. Cd Cu, Pl	Total Hg - EP,	E. Coli - IDEX	Hardness - EP	NO ₃ +NO ₂ - EP	NH ₃ - SM 4500
(+C00313	11/19/23		0138		231119-03-	WG	Gr	X	X									3				
-02			02.39		231119-11-1	NG	GK	X	X									X		***************************************		
-03			0119		231119-12-	WG	ST	×	×									7	٢			
-04			0153		231119 - 14 -1	UG	ST	X	×									>	٤			١
-05			1200		231119-14	t 101	ST	\times	×									×	(
V -06			1200		231119-14-0	01	ST	×	\times									X				
		99999999999999999999999999999999999999																				
Relinquis	hed by (si	gn)	Date Trans	& Time sferred	Rece	ived by (sign)					mm	ient	s/Sp	ecia	l In:	stru	ctio	 ns:				
Haminda	r Johna	r	4:04	11/19/2	23 A ASE			Receiv	ved	59	mp	les	11.	-19 -	23	0	758	3			<u>-20, 600</u>	
eoc-wal-ai											i Z	Fr	Ar		Ŭ.	32	3	(C-121			

C-122

Report Date: 12/20/2023 13:21

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Samples in this Report

Lab ID	Sample	Sample Description	Matrix Qualifiers	Date Sampled	Date Received
AC00324-01	ACST1B	231119-206-WG	Water	11/19/2023	11/19/2023
AC00324-02	ACST1C	231119-206-WC	Water	11/19/2023	11/19/2023
AC00324-03	ACST1C	231119-03-WC	Water	11/19/2023	11/19/2023
AC00324-04	ACST1C	231119-11-WC	Water	11/19/2023	11/19/2023
AC00324-05	ACST1C	231119-12-WC	Water	11/19/2023	11/19/2023
AC00324-06	ACST1C	231119-14-WC	Water	11/19/2023	11/19/2023

Report Date: 12/20/2023 13:21

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Analysis Report

Location:	ACST1	В				Location Description:	231119-2	06-WG		
Date/Time Collected	d: 11/19/2	2023 06:22	2							
Lab Number:	AC003	24-01				Sample Collector:	S.T			
Sample Type:	Grab					Sample Matrix:	Water			
Analyte Name	Batch	Result	Units	Adjusted MDL *	Method MDL	Analysis Method Reference	Prepared	Analyzed	Analyst Initials	Qualifier
Vicrobiology :. Coli	B234656	1732.9 N	1PN/100 mL	. 1.0	1.0	IDEXX - Colilert	11/19/23 13:58	11/20/23 13:59	SMC	
Net Chemistry Chlorine Screen	B234655	Absent				SM 4500-CL G-2000 mod	11/19/23	11/20/23 13:52	ASE	

Analysis Report

Location:	ACST	1C				Location Description:	231119-2	06-WC		
Date/Time Collected	d: 11/19/2	2023 03:14	- 11/19/	2023 12:21						
Lab Number:	AC003	324-02				Sample Collector:	S.T			
Sample Type:	Compo	osite				Sample Matrix:	Water			
Analyte Name	Batch	Result	Units	Adjusted MDL *	Method MDL	Analysis Method Reference	Prepared	Analyzed	Analyst Initials	Qualifier
Wet Chemistry										
Ammonia, as N	B234817	0.563	mg/L	0.0350	0.0350	SM 4500-NH3 D-2011	12/01/23	12/1/23 13:36	JAL	
BOD5	B234673	162	mg/L	2.00	2.00	SM 5210 B-2016	11/20/23	11/25/23 13:42	MEC	
COD	B234668	329	mg/L	7.00	7.00	HH 8000, Standard Method 5220 D	11/20/23	11/20/23 12:29	BAK	
Nitrate-Nitrite, as N	B234773	0.136	mg/L	0.0250	0.0250	EPA 353.2, Rev. 2.0 (1993)	11/29/23	11/29/23 13:43	JAL	
TKN	B234964	3.17	mg/L	0.800	0.200	EPA 351.2, 10-107-06-2-M (Equivalent)	12/15/23	12/15/23 10:46	JAL	D
Total Dissolved Solids	8234678	263	mg/L	20.0	20.0	SM 2540 C-2015	11/20/23	11/22/23 9:26	RKT	
Total Suspended Solids	B234665	28.7	mg/L	0.900	0.900	SM 2540 D-2015	11/20/23	11/20/23 12:06	NTS	
Turbidity	B234675	21.1	NTU	0.3	0.3	EPA 180.1, Rev. 2.0 (1993)	11/20/23	11/20/23 13:00	JAL	
Dissolved Wet Ch	emistry									
Orthophosphate, as P	B234672	1.71	mg/L	0.0300	3.00E-3	EPA 365.1, Rev. 2.0 (1993)	11/20/23	11/20/23 11:43	JAL	D
Total Metals	-									
Mercury	B234760	<0.0100	ug/L	0.0100	0.0100	EPA 245.1	11/29/23	11/30/23 9:22	SAS	U
Arsenic	B234724	1.7	ug/L	0.070	0.070	EPA 200.8	11/25/23	11/26/23 14:05	DMW	
Cadmium	B234724	0.059	ug/L	0.010	0.010	EPA 200.8	11/25/23	11/26/23 14:05	DMW	
Calcium	B234692	11.8	mg/L	0.0400	0.0400	EPA 200.7	11/21/23	11/22/23 17:43	EDM	
Lead	B234724	3.3	ug/L	0.010	0.010	EPA 200.8	11/25/23	11/26/23 14:05	DMW	
Magnesium	B234692	3370	ug/L	80.0	80.0	EPA 200.7	11/21/23	11/22/23 17:43	EDM	
Phosphorus as P	B234692	2.06	mg/L	0.0120	0.0120	EPA 200.7	11/21/23	11/22/23 17:43	EDM	
Hardness	B234692	43.3	mg/L	0.100	0.100	SM 2340 B-2011	11/21/23	11/22/23 17:43	EDM	
Dissolved Metals										
Cadmium	B234723	0.029	ug/L	0.010	0.010	EPA 200.8	11/25/23	11/25/23 16:25	DMW	
Copper	B234723	8.5	ug/L	0.15	0.15	EPA 200.8	11/25/23	11/25/23 16:25	DMW	
Lead	B234723	0.93	ug/L	9.00E-3	9.00E-3	EPA 200.8	11/25/23	11/25/23 16:25	DMW	
Zinc	B234723	61.8	ug/L	0.50	0.50	EPA 200.8	11/25/23	11/25/23 16:25	DMW	

Report Date: 12/20/2023 13:21

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Analysis Report

Location:	ACST1	IC				Location Description:	231119-03	3-WC		
Date/Time Collected	i: 11/19/2	2023 02:16	6 - 11/19/	2023 13:28						
Lab Number:	AC003	24-03				Sample Collector:	S.T			
Sample Type:	Compo	osite				Sample Matrix:	Water			
Analyte Name	Batch	Result	Units	Adjusted MDL *	l Method MDL	Analysis Method Reference	Prepared	Analyzed	Analyst Initials	Qualifier
Wet Chemistry										
Ammonia, as N	B234817	0.530	mg/L	0.0350	0.0350	SM 4500-NH3 D-2011	12/01/23	12/1/23 13:41	JAL	
30D5	B234673	59.5	mg/L	2.00	2.00	SM 5210 B-2016	11/20/23	11/25/23 13:24	MEC	
COD	B234668	137	mg/L	7.00	7.00	HH 8000, Standard Method 5220 D	11/20/23	11/20/23 12:29	BAK	
Nitrate-Nitrite, as N	B234773	0.145	mg/L	0.0250	0.0250	EPA 353.2, Rev. 2.0 (1993)	11/29/23	11/29/23 13:44	JAL	
ĨKN	B234779	1.76	mg/L	0.200	0.200	EPA 351.2, 10-107-06-2-M (Equivalent)	11/30/23	12/1/23 10:11	ALN	
Total Dissolved Solids	B234678	136	mg/L	20.0	20.0	SM 2540 C-2015	11/20/23	11/22/23 9:28	RKT	
Total Suspended Solids	B234665	8.63	mg/L	0.900	0.900	SM 2540 D-2015	11/20/23	11/20/23 10:04	NTS	
Furbidity	B234675	8.6	NTU	0.3	0.3	EPA 180.1, Rev. 2.0 (1993)	11/20/23	11/20/23 13:04	JAL	
Dissolved Wet Ch	emistry									
Orthophosphate, as P	B234672	0.538	mg/L	0.0150	3.00E-3	EPA 365.1, Rev. 2.0 (1993)	11/20/23	11/20/23 11:45	JAL	D
Total Metals										
Vercury	B234760	<0.0100	ug/L	0.0100	0.0100	EPA 245.1	11/29/23	11/30/23 9:08	SAS	U
Arsenic	B234724	0.93	ug/L	0.070	0.070	EPA 200.8	11/25/23	11/26/23 14:15	DMW	
Cadmium	B234724	0.030	ug/L	0.010	0.010	EPA 200.8	11/25/23	11/26/23 14:15	DMW	
Calcium	B234692	8.66	mg/L	0.0400	0.0400	EPA 200.7	11/21/23	11/22/23 17:38	EDM	
_ead	B234724	0.33	ug/L	0.010	0.010	EPA 200.8	11/25/23	11/26/23 14:15	DMW	
Vagnesium	B234692	3430	ug/L	80.0	80.0	EPA 200.7	11/21/23	11/22/23 17:38	EDM	
Phosphorus as P	B234692	0.710	mg/L	0.0120	0.0120	EPA 200.7	11/21/23	11/22/23 17:38	EDM	
lardness	B234692	35.8	mg/L	0.100	0.100	SM 2340 B-2011	11/21/23	11/22/23 17:38	EDM	
Dissolved Metals										
Cadmium	B234723	0.012	ug/L	0.010	0.010	EPA 200.8	11/25/23	11/25/23 16:35	DMW	
Copper	B234723	3.5	ug/L	0.15	0.15	EPA 200.8	11/25/23	11/25/23 16:35	DMW	
ead	B234723	0.085	ug/L	9.00E-3	9.00E-3	EPA 200.8	11/25/23	11/25/23 16:35	DMW	
Zinc	B234723	32.7	ug/L	0.50	0.50	EPA 200.8	11/25/23	11/25/23 16:35	DMW	

Analysis Report

Location:	ACST1	IC				Location Description:	231119-1	1-WC		
Date/Time Collected	11/19/2	2023 02:24	- 11/19/	2023 15:28						
Lab Number:	AC003	24-04				Sample Collector:	S.T			
Sample Type:	Compo	osite				Sample Matrix:	Water			
Analyte Name	Batch	Result	Units	Adjusted MDL *	Method MDL	Analysis Method Reference	Prepared	Analyzed	Analyst Initials	Qualifier
Wet Chemistry										
Ammonia, as N	B234817	0.527	mg/L	0.0350	0.0350	SM 4500-NH3 D-2011	12/01/23	12/1/23 13:53	JAL	
BOD5	B234673	61.9	mg/L	2.00	2.00	SM 5210 B-2016	11/20/23	11/25/23 13:17	MEC	
COD	B234668	167	mg/L	7.00	7.00	HH 8000, Standard Method 5220 D	11/20/23	11/20/23 12:29	BAK	
Nitrate-Nitrite, as N	B234773	0.182	mg/L	0.0250	0.0250	EPA 353.2, Rev. 2.0 (1993)	11/29/23	11/29/23 13:45	JAL	
TKN	B234779	2.07	mg/L	0.200	0.200	EPA 351.2, 10-107-06-2-M (Equivalent)	11/30/23	12/1/23 10:12	ALN	
Total Dissolved Solids	B234678	180	mg/L	20.0	20.0	SM 2540 C-2015	11/20/23	11/22/23 9:29	RKT	
Total Suspended Solids	B234665	27.3	mg/L	0.900	0.900	SM 2540 D-2015	11/20/23	11/20/23 11:05	NTS	
Turbidity	B234675	19.7	NTU	0.3	0.3	EPA 180.1, Rev. 2.0 (1993)	11/20/23	11/20/23 13:15	JAL	
Dissolved Wet Ch	emistry									
Orthophosphate, as P	B234672	0.768	mg/L	0.0150	3.00E-3	EPA 365.1, Rev. 2.0 (1993)	11/20/23	11/20/23 11:46	JAL	D
Total Metals										
Mercury	B234760	<0.0100	ug/L	0.0100	0.0100	EPA 245.1	11/29/23	11/30/23 9:25	SAS	U
Arsenic	B234724	1.7	ug/L	0.070	0.070	EPA 200.8	11/25/23	11/26/23 14:17	DMW	
Cadmium	B234724	0.041	ug/L	0.010	0.010	EPA 200.8	11/25/23	11/26/23 14:17	DMW	
Calcium	B234692	13.3	mg/L	0.0400	0.0400	EPA 200.7	11/21/23	11/22/23 17:40	EDM	
Lead	B234724	2.2	ug/L	0.010	0.010	EPA 200.8	11/25/23	11/26/23 14:17	DMW	
Magnesium	B234692	2850	ug/L	80.0	80.0	EPA 200.7	11/21/23	11/22/23 17:40	EDM	
Phosphorus as P	B234692	0.958	mg/L	0.0120	0.0120	EPA 200.7	11/21/23	11/22/23 17:40	EDM	
Hardness	B234692	45.0	mg/L	0.100	0.100	SM 2340 B-2011	11/21/23	11/22/23 17:40	EDM	
Dissolved Metals										
Cadmium	B234723	<0.0100	ug/L	0.010	0.010	EPA 200.8	11/25/23	11/25/23 16:37	DMW	U
Copper	B234723	5.0	ug/L	0.15	0.15	EPA 200.8	11/25/23	11/25/23 16:37	DMW	
Lead	B234723	0.21	ug/L	9.00E-3	9.00E-3	EPA 200.8	11/25/23	11/25/23 16:37	DMW	
Zinc	B234723	32.3	ug/L	0.50	0.50	EPA 200.8	11/25/23	11/25/23 16:37	DMW	

Report Date: 12/20/2023 13:21

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Analysis Report

Location:	ACST	IC				Location Description:	231119-12	2-WC		
Date/Time Collected	d: 11/19/2	2023 01:07	′ - 11/19/3	2023 14:42						
Lab Number:	AC003	24-05				Sample Collector:	S.T			
Sample Type:	Compo	osite				Sample Matrix:	Water			
Analyte Name	Batch	Result	Units	Adjustec MDL *	I Method MDL	Analysis Method Reference	Prepared	Analyzed	Analyst Initials	Qualifier
Net Chemistry										
Ammonia, as N	B234817	0.610	mg/L	0.0350	0.0350	SM 4500-NH3 D-2011	12/01/23	12/1/23 13:49	JAL	
BOD5	B234673	19.9	mg/L	2.00	2.00	SM 5210 B-2016	11/20/23	11/25/23 13:10	MEC	
COD	B234668	61.0	mg/L	7.00	7.00	HH 8000, Standard	11/20/23	11/20/23 12:29	BAK	
litrate-Nitrite, as N	B234773	0.246	mg/L	0.0250	0.0250	EPA 353.2, Rev. 2.0	11/29/23	11/29/23 13:46	JAL	
̈́ΚΝ	B234779	1.14	mg/L	0.200	0.200	(1993) EPA 351.2, 10-107-06-2-M (Equivalent)	11/30/23	12/1/23 10:14	ALN	
otal Dissolved Solids	B234678	61.0	mg/L	20.0	20.0	SM 2540 C-2015	11/20/23	11/22/23 9:30	RKT	
otal Suspended Solids	B234665	16.2	mg/L	0.900	0.900	SM 2540 D-2015	11/20/23	11/20/23 11:04	NTS	
urbidity	B234675	11.7	NTU	0.3	0.3	EPA 180.1, Rev. 2.0 (1993)	11/20/23	11/20/23 13:12	JAL	
Dissolved Wet Ch	emistry									
Orthophosphate, as P	B234672	0.167	mg/L	3.00E-3	3.00E-3	EPA 365.1, Rev. 2.0 (1993)	11/20/23	11/20/23 11:33	JAL	
Fotal Metals										
<i>N</i> ercury	B234760	<0.0100	ug/L	0.0100	0.0100	EPA 245.1	11/29/23	11/30/23 9:36	SAS	U
Arsenic	B234724	0.66	ug/L	0.070	0.070	EPA 200.8	11/25/23	11/26/23 14:20	DMW	
Cadmium	B234724	0.045	ug/L	0.010	0.010	EPA 200.8	11/25/23	11/26/23 14:20	DMW	
Calcium	B234692	5.87	mg/L	0.0400	0.0400	EPA 200.7	11/21/23	11/22/23 17:22	EDM	
.ead	B234724	1.7	ug/L	0.010	0.010	EPA 200.8	11/25/23	11/26/23 14:20	DMW	
<i>A</i> agnesium	B234692	1120	ug/L	80.0	80.0	EPA 200.7	11/21/23	11/22/23 17:22	EDM	
² hosphorus as P	B234692	0.226	mg/L	0.0120	0.0120	EPA 200.7	11/21/23	11/22/23 17:22	EDM	
lardness	B234692	19.3	mg/L	0.100	0.100	SM 2340 B-2011	11/21/23	11/22/23 17:22	EDM	
Dissolved Metals							-			
Cadmium	B234723	0.015	ug/L	0.010	0.010	EPA 200.8	11/25/23	11/25/23 16:39	DMW	
Copper	B234723	2.7	ug/L	0.15	0.15	EPA 200.8	11/25/23	11/25/23 16:39	DMW	
.ead	B234723	0.12	ug/L	9.00E-3	9.00E-3	EPA 200.8	11/25/23	11/25/23 16:39	DMW	
Zinc	B234723	25.9	ug/L	0.50	0.50	EPA 200.8	11/25/23	11/25/23 16:39	DMW	

Analysis Report

Location:	ACST	IC				Location Description:	231119-1	4-WC		
Date/Time Collected	d: 11/19/2	2023 01:32	2 - 11/19/2	2023 14:07						
Lab Number:	AC003	24-06				Sample Collector:	S.T			
Sample Type:	Compo	osite				Sample Matrix:	Water			
Analyte Name	Batch	Result	Units	Adjusted MDL *	Method MDL	Analysis Method Reference	Prepared	Analyzed	Analyst Initials	Qualifier
Wet Chemistry										
Ammonia, as N	B234817	0.454	mg/L	0.0350	0.0350	SM 4500-NH3 D-2011	12/01/23	12/1/23 13:45	JAL	
BOD5	B234673	36.5	mg/L	2.00	2.00	SM 5210 B-2016	11/20/23	11/25/23 13:06	MEC	
COD	B234668	94.0	mg/L	7.00	7.00	HH 8000, Standard Method 5220 D	11/20/23	11/20/23 12:29	BAK	
Nitrate-Nitrite, as N	B234773	0.614	mg/L	0.0250	0.0250	EPA 353.2, Rev. 2.0 (1993)	11/29/23	11/29/23 13:47	JAL	
TKN	B234779	1.27	mg/L	0.200	0.200	EPA 351.2, 10-107-06-2-M (Equivalent)	11/30/23	12/1/23 10:15	ALN	
Total Dissolved Solids	B234678	153	mg/L	20.0	20.0	SM 2540 C-2015	11/21/23	11/22/23 9:31	RKT	
Total Suspended Solids	B234665	21.7	mg/L	0.900	0.900	SM 2540 D-2015	11/20/23	11/20/23 10:03	NTS	
Turbidity	B234675	15.0	NTU	0.3	0.3	EPA 180.1, Rev. 2.0 (1993)	11/20/23	11/20/23 13:07	JAL	
Dissolved Wet Ch	emistry									
Orthophosphate, as P	B234672	0.402	mg/L	3.00E-3	3.00E-3	EPA 365.1, Rev. 2.0 (1993)	11/20/23	11/20/23 11:37	JAL	
Total Metals										
Mercury	B234760	<0.0100	ug/L	0.0100	0.0100	EPA 245.1	11/29/23	11/30/23 9:39	SAS	U
Arsenic	B234724	2.1	ug/L	0.070	0.070	EPA 200.8	11/25/23	11/26/23 14:22	DMW	
Cadmium	B234724	0.061	ug/L	0.010	0.010	EPA 200.8	11/25/23	11/26/23 14:22	DMW	
Calcium	B234692	17.4	mg/L	0.0400	0.0400	EPA 200.7	11/21/23	11/22/23 17:24	EDM	
Lead	B234724	1.9	ug/L	0.010	0.010	EPA 200.8	11/25/23	11/26/23 14:22	DMW	
Magnesium	B234692	3490	ug/L	80.0	80.0	EPA 200.7	11/21/23	11/22/23 17:24	EDM	
Phosphorus as P	B234692	0.504	mg/L	0.0120	0.0120	EPA 200.7	11/21/23	11/22/23 17:24	EDM	
Hardness	B234692	57.8	mg/L	0.100	0.100	SM 2340 B-2011	11/21/23	11/22/23 17:24	EDM	
Dissolved Metals										
Cadmium	B234723	0.022	ug/L	0.010	0.010	ÉPA 200.8	11/25/23	11/25/23 16:42	DMW	
Copper	B234723	4.0	ug/L	0.15	0.15	EPA 200.8	11/25/23	11/25/23 16:42	DMW	
Lead	B234723	0.11	ug/L	9.00E-3	9.00E-3	EPA 200.8	11/25/23	11/25/23 16:42	DMW	
Zinc	B234723	27.2	ug/L	0.50	0.50	EPA 200.8	11/25/23	11/25/23 16:42	DMW	

Quality Control Report

Analyte Name	Method Blank	Units	% Recovery	Recovery Limits	RPD	RPD Limit	Analyzed	Analyst Initials	Qualifier
Aicrobiology Batch: B234656 Blank (B234656-BLK1)	A I - - - - - - - - - -							0140	
	Absent						11/20/2023	SMC	
LCS (B234656-BS1) E. Coli				Present			11/20/2023	SMC	
Duplicate (B234656-DUP2) E. Coli	Source ID: AC00)323-04RE1			Pass	128	11/20/2023	SMC	
Net Chemistry Batch: B234665 Blank (B234665-BLK1) Total Suspended Solids	c0 9	ma/l					11/20/2022	NTS	
	<0.5	my/L					11/20/2023	N15	0
Total Suspended Solids			97.5	90-110			11/20/2023	NTS	
Duplicate (B234665-DUP1) Total Suspended Solids	Source ID: WB0	2817-07			3.88	20	11/20/2023	NTS	
Duplicate (B234665-DUP2) Total Suspended Solids	Source ID: LS01	764-02			3.33	20	11/20/2023	NTS	
3atch: B234668 Blank (B234668-BLK1) COD	<7	mg/L					11/20/2023	BAK	U
LCS (B234668-BS1) COD			101	90-110			11/20/2023	BAK	
Duplicate (B234668-DUP1) COD	Source ID: AC00	324-02			0.304	10	11/20/2023	ВАК	
3atch: B234673 Blank (B234673-BLK1)		_							
BOD5	<2	mg/L					11/25/2023	MEC	U
LCS (B234673-BS2) BOD5			110	84.6-115.4			11/25/2023	MEC	
Duplicate (B234673-DUP1) BOD5	Source ID: ST00	061-02			1.13	30	11/25/2023	MEC	D
Duplicate (B234673-DUP2) BOD5	Source ID: AC00)324-03			3.79	30	11/25/2023	MEC	

Quality Control Report (Continued)

Analyte Name	Meth Blar	od nk L	Jnits	% Recovery	Recovery Limits	RPD	RPD Limit	Analyzed	Analyst Initials	Qualifier
Wet Chemistry (Contir	nued)									
Batch: B234675 Blank (B234675-BLK1) Turbidity	, <0.	3 N	ΙTU					11/20/2023	JAL	U
LCS (B234675-BS1) Turbidity				97.9	90-110			11/20/2023	JAL	
Duplicate (B234675-DUP1) Turbidity	Source ID: A	C0032	24-06			5.41	25	11/20/2023	JAL	
Batch: B234678 Blank (B234678-BLK1) Total Dissolved Solids	<20) n	ng/L					11/22/2023	RKT	U
LCS (B234678-BS1) Total Dissolved Solids				95.5	90-110			11/22/2023	RKT	
Duplicate (B234678-DUP1) Total Dissolved Solids	Source ID: A	\C0032	24-02			0.286	10	11/22/2023	RKT	
Batch: B234773 Blank (B234773-BLK1) Nitrate-Nitrite, as N	<0.0	25 n	ng/L					11/29/2023	JAL	U
Blank (B234773-BLK2) Nitrate-Nitrite, as N	<0.0	25 n	ng/L					11/29/2023	JAL	U
LCS (B234773-BS1) Nitrate-Nitrite, as N				98.7	90-110			11/29/2023	JAL	
LCS (B234773-BS2) Nitrate-Nitrite, as N				98.8	90-110			11/29/2023	JAL	
Duplicate (B234773-DUP1) Nitrate-Nitrite, as N	Source ID: E	3B0340	04-02			8.87	10	11/29/2023	JAL	
Duplicate (B234773-DUP2) Nitrate-Nitrite, as N	Source ID: F	RWOOC	047-01			0.228	10	11/29/2023	JAL	
Duplicate (B234773-DUP3) Nitrate-Nitrite, as N	Source ID: V	VB028	332-06			0.449	10	11/29/2023	JAL	
Matrix Spike (B234773-MS1) Nitrate-Nitrite, as N	Source ID	: BB03	404-02	100	90-110			11/29/2023	JAL	
Matrix Spike (B234773-MS2) Nitrate-Nitrite, as N	Source ID	: RW0	0047-01	97.9	90-110			11/29/2023	JAL	
Matrix Spike (B234773-MS3) Nitrate-Nitrite, as N	Source ID	: WB0	2832-06	103	90-110			11/29/2023	JAL	
Matrix Spike Dup (B234773- Nitrate-Nitrite, as N	MSD1) Sou	irce ID	: BB03404	4-02 101	90-110	0.293	10	11/29/2023	JAL	
Matrix Spike Dup (B234773- Nitrate-Nitrite, as N	MSD2) Sou	irce ID	: RW0004	17-01 97.8	90-110	0.0212	10	11/29/2023	JAL	
Matrix Spike Dup (B234773- Nitrate-Nitrite, as N	MSD3) Sou	irce ID	: WB0283	82-06 104	90-110	0.135	10	11/29/2023	JAL	

The contents of this report apply to the sample(s) analyzed in accordance with the Chain of Custody document. No duplication of this report is allowed, except in its entirety

Quality Control Report

		Method		%	Recovery		RPD		Analyst	
Analyte Name		Blank	Units	Recovery	Limits	RPD	Limit	Analyzed	Initials	Qualifier
Net Chemistry (Contir	ued)									
Batch: B234779										
Blank (B234779-BLK1) TKN		<0.2	mg/L					12/01/2023	ALN	U
Blank (B234779-BLK2) TKN		<0.2	mg/L					12/01/2023	ALN	U
LCS (B234779-BS1) TKN				100	80-120			12/01/2023	ALN	
LCS (B234779-BS2) TKN				99.5	80-120			12/01/2023	ALN	
Duplicate (B234779-DUP2) TKN	Source	ID: BB03	404-01			2.65	20	12/01/2023	ALN	D
Duplicate (B234779-DUP3) TKN	Source	ID: LS01	768-02			3.57	20	12/01/2023	ALN	D
Duplicate (B234779-DUP4) TKN	Source	ID: RW0	0047-02			2.40	20	12/01/2023	ALN	D
Matrix Spike (B234779-MS2) TKN	Sour	ce ID: BB	03404-01	95.4	80-120			12/01/2023	ALN	D
Matrix Spike (B234779-MS3) TKN	Sour	ce ID: LS(01768-02	102	80-120			12/01/2023	ALN	D
Matrix Spike (B234779-MS4) TKN	Sour	ce ID: RW	/00047-02	105	80-120			12/01/2023	ALN	D
Matrix Spike (B234779-MS5) TKN	Sour	ce ID: EP	00286-01	81.5	80-120			12/01/2023	ALN	D
Matrix Spike (B234779-MS6) TKN	Sour	ce ID: EP	00287-01	101	80-120			12/01/2023	ALN	D
Matrix Spike (B234779-MS7) TKN	Sour	ce ID: EP	00288-01	97.9	80-120			12/01/2023	ALN	D
Matrix Spike (B234779-MS8) TKN	Sour	ce ID: EP	00289-01	105	80-120			12/01/2023	ALN	D
Matrix Spike (B234779-MS9) TKN	Sour	ce ID: EP	00290-01	99.1	80-120			12/01/2023	ALN	D
Matrix Spike (B234779-MSA) TKN	Sour	ce ID: EP	00291-01	102	80-120			12/01/2023	ALN	D
Matrix Spike (B234779-MSC) TKN	Sour	ce ID: EP	00294-01	104	80-120			12/01/2023	ALN	D
Matrix Spike Dup (B234779-I TKN	ISD2)	Source	ID: BB03404	4-01 98.0	80-120	1.43	20	12/01/2023	ALN	D
Matrix Spike Dup (B234779-I TKN	ISD3)	Source	ID: LS01768	3-02 102	80-120	0.104	20	12/01/2023	ALN	D
Matrix Spike Dup (B234779-I TKN	ASD4)	Source	ID: RW0004	7-02 108	80-120	1.54	20	12/01/2023	ALN	D

The contents of this report apply to the sample(s) analyzed in accordance with the Chain of Custody document. No duplication of this report is allowed, except in its entirety

Quality Control Report (Continued)

Analyte Name	Method Blank	Units	% Recovery	Recovery Limits	RPD	RPD Limit	Analyzed	Analyst Initials	Qualifier
Wet Chemistry (Contir	nued)								
Batch: B234817 Blank (B234817-BLK1) Ammonia, as N	<0.035	mg/L					12/01/2023	JAL	U
LCS (B234817-BS1) Ammonia, as N			110	90-110			12/01/2023	JAL	
Duplicate (B234817-DUP1) Ammonia, as N	Source ID: BB03	3379-02			0.316	10	12/01/2023	JAL	
Duplicate (B234817-DUP2) Ammonia, as N	Source ID: BB03	3389-01			0.892	10	12/01/2023	JAL	
Matrix Spike (B234817-MS1) Ammonia, as N	Source ID: BB	03379-02	105	80-120			12/01/2023	JAL	
Matrix Spike (B234817-MS2) Ammonia, as N	Source ID: BB	03389-01	102	80-120			12/01/2023	JAL	
Matrix Spike Dup (B234817-M Ammonia, as N	MSD1) Source	ID: BB03379	-02 105	80-120	0.156	10	12/01/2023	JAL	
Matrix Spike Dup (B234817-M Ammonia, as N	MSD2) Source	ID: BB03389	0-01 104	80-120	1.30	10	12/01/2023	JAL	
Batch: B234948 Blank (B234948-BLK1) TKN	<0.2	mg/L					12/13/2023	EDM	U
LCS (B234948-BS1) TKN			100	80-120			12/13/2023	EDM	
Duplicate (B234948-DUP1) TKN	Source ID: BB03	3406-01			1.18	20	12/13/2023	EDM	D
Duplicate (B234948-DUP2) TKN	Source ID: BB03	3408-01			0.505	20	12/13/2023	EDM	D
Matrix Spike (B234948-MS1) TKN	Source ID: BB	03406-01	96.3	80-120			12/13/2023	EDM	D
Matrix Spike (B234948-MS2) TKN	Source ID: BB	03408-01	105	80-120			12/13/2023	EDM	D
Matrix Spike (B234948-MS4) TKN	Source ID: EP	00293-01RE	1 99.4	80-120			12/13/2023	EDM	D
Matrix Spike (B234948-MS5) TKN	Source ID: EP	00295-01	103	80-120			12/13/2023	EDM	D
Matrix Spike Dup (B234948-I TKN	MSD1) Source	ID: BB03406	5-01 92.3	80-120	1.14	20	12/13/2023	EDM	D
Matrix Spike Dup (B234948-I TKN	MSD2) Source	ID: BB03408	3-01 104	80-120	0.586	20	12/13/2023	EDM	D

Quality Control Report

Analyte Name	Method Blank	Units	% Recovery	Recovery Limits	RPD	RPD Limit	Analyzed	Analyst Initials	Qualifier
Vet Chemistry (Contin	ued)								
latch: B234964	-								
Blank (B234964-BLK1) TKN	<0.2	mg/L					12/15/2023	JAL	U
LCS (B234964-BS1) TKN			93.6	80-120			12/15/2023	JAL	
Duplicate (B234964-DUP2) TKN	Source ID: BB03	420-03			4.44	20	12/15/2023	JAL	D
Duplicate (B234964-DUP3)	Source ID: AC00	324-02RE2							
TKN					15.8	20	12/15/2023	JAL	D
Matrix Spike (B234964-MS2) TKN	Source ID: BB	03420-03	98.0	80-120			12/15/2023	JAL	D
Matrix Spike (B234964-MS3) TKN	Source ID: AC	00324-02RE	2 95.8	80-120			12/15/2023	JAL	D
Matrix Spike Dup (B234964-N TKN	ISD2) Source	D: BB03420	-03 106	80-120	3.42	20	12/15/2023	JAL	D
Matrix Spike Dup (B234964-N TKN	ISD3) Source	D: AC00324	-02RE2 110	80-120	11.9	20	12/15/2023	JAL	D
Dissolved Wet Chemis	strv								
Satch: B234672 Blank (B234672-BLK1)	,, ,								
Orthophosphate, as P	<0.003	mg/L					11/20/2023	JAL	U
LCS (B234672-BS1) Orthophosphate, as P			95.7	90-110			11/20/2023	JAL	
Duplicate (B234672-DUP1) Orthophosphate, as P	Source ID: AC00	324-05			0.720	10	11/20/2023	JAL	
Matrix Spike (B234672-MS1) Orthophosphate, as P	Source ID: AC	00324-05	99.0	90-110			11/20/2023	JAL	
Matrix Spike Dup (B234672-N Orthophosphate, as P	(ISD1) Source	D: AC00324	-05 99.7	90-110	0.267	10	11/20/2023	JAL	

Quality Control Report (Continued)

Analyte Name	Method Blank	Units	% Recovery	Recovery Limits	RPD	RPD Limit	Analyzed	Analyst Initials	Qualifier
Total Metals									
Batch: B234692									
Blank (B234692-BLK1)									
Calcium	<0.04	mg/L					11/22/2023	EDM	U
Magnesium	<80	ug/L					11/22/2023	EDM	U
Phosphorus as P	<0.012	mg/L					11/22/2023	EDM	U
LCS (B234692-BS1)									
Calcium			100	85-115			11/22/2023	EDM	
Magnesium			99.6	85-115			11/22/2023	EDM	
Phosphorus as P			98.6	85-115			11/22/2023	EDM	
Duplicate (B234692-DUP1) S	ource ID: AC00)324-06							
Calcium					0.0422	20	11/22/2023	EDM	
Magnesium					0.465	20	11/22/2023	EDM	
Phosphorus as P					0.357	20	11/22/2023	EDM	
Matrix Spike (B234692-MS1)	Source ID: AC	00324-06							
Calcium			100	70-130			11/22/2023	EDM	
Magnesium			101	70-130			11/22/2023	EDM	
Phosphorus as P			99.0	70-130			11/22/2023	EDM	
Matrix Spike Dup (B234692-MS	D1) Source	ID: AC0032	4-06						
Calcium			99.9	70-130	0.151	20	11/22/2023	EDM	
Magnesium			100	70-130	0.422	20	11/22/2023	EDM	
Phosphorus as P			99.3	70-130	0.191	20	11/22/2023	EDIVI	
Batch: B234724									
Blank (B234724-BLK1)									
Arsenic	<0.070	ug/L					11/26/2023	DMW	U
Cadmium	<0.010	ug/L					11/26/2023	DMW	U
Lead	<0.010	ug/L					11/26/2023	DMW	0
LCS (B234724-BS1)									
Arsenic			96.0	85-115			11/26/2023	DMW	
Cadmium			99.8	85-115			11/26/2023	DIVIVV	
Lead			99.9	85-115			11/20/2023	DIVIVV	
Duplicate (B234724-DUP1) S	Source ID: AC00	0324-02						51.044	
Arsenic					3.50	20	11/26/2023	DMW	
Cadmium					13.9	20	11/26/2023	DMW	
Lead					1.94	20	11/20/2023	DIVIV	
Matrix Spike (B234724-MS1)	Source ID: AC	00324-02					44/00/0000		
Arsenic			96.2	70-130			11/26/2023	DIMIN	
Cadmium			99.4	70-130			11/20/2023		
Lead			95.5	70-130			11/20/2023	DIALAA	
Matrix Spike Dup (B234724-MS	SD1) Source	ID: AC0032	4-02		0.01	66	44/00/0000		
Arsenic			99.6	70-130	2.94	20	11/26/2023		
Caamium			07.1	70-130	2.75	20	11/26/2023	DMW	
Leau			07.1	70 100	1.21	20	11,20,2020		

Quality Control Report

Analyte Name	Method Blank	Units	% Recovery	Recovery Limits	RPD	RPD Limit	Analyzed	Analyst Initials	Qualifier
fotal Metals (Continue	d)								
Patah: B224760									
Disale (D004700 D1 (4))									
Blank (B234760-BLK1)	0.04								
Mercury	<0.01	ug/L					11/30/2023	SAS	U
LCS (B234760-BS1)									
Mercury			98.9	85-115			11/30/2023	SAS	
Duplicate (B234760-DUP1)	Source ID: ACO	0324-03							
Mercury	00010010.7100	0021 00			NB	20	11/30/2023	SAS	U
Duplicate (B234760-DUP2)	Source ID: EP0	0285-01							
Mercury					NR	20	11/30/2023	SAS	U
Matrix Spike (B234760-MS1)	Source ID: AC	00324-03							
Mercury			103	70-130			11/30/2023	SAS	
Matrix Spike (B234760-MS2)	Source ID: EE	200285-01							C-0-075
Mercury	Source ID. LI	00203-01	101	70-130			11/30/2023	SVS	
			101	70 100			11/30/2023	0.00	
Matrix Spike Dup (B234760-M	ISD1) Source	ID: AC00324	1-03						
Mercury			103	70-130	0.0974	20	11/30/2023	SAS	
Matrix Spike Dup (B234760-M	ISD2) Source	ID: EP00285	5-01						
Mercury	,		104	70-130	2.73	20	11/30/2023	SAS	
No o church Mastella									
Jissolved Metals									
latch: B234723									
Blank (B234723-BLK1)									
Cadmium	<0.010	ug/L					11/25/2023	DMW	U
Copper	<0.15	ug/L					11/25/2023	DMW	U
Lead	<0.0090	ug/L					11/25/2023	DMW	U
Zinc	<0.50	ug/L					11/25/2023	DMW	U
LCS (B224722-BS1)									
Cadmium			94.9	85-115			11/05/0002		
Copper			94.3	85-115			11/25/2023		
lead			94.0	85-115			11/25/2023	DMM	
Zinc			90.9	85-115			11/25/2023	DMM	
			30.0	00-110			11/20/2020	DIVIAN	
Duplicate (B234723-DUP1)	Source ID: AC0	0324-02							
Cadmium					5.41	10	11/25/2023	DMW	
Copper					0.546	10	11/25/2023	DMW	
Lead					1.75	10	11/25/2023	DMW	
Zinc					0.526	10	11/25/2023	DMW	
Matrix Spike (B234723-MS1)	Source ID: AC	00324-02							
Cadmium			96.5	70-130			11/25/2023	DMW	
Copper			104	70-130			11/25/2023	DMW	
Lead			93.1	70-130			11/25/2023	DMW	
Zinc			103	70-130			11/25/2023	DMW	
Matrix Spike Dup (D024700 M	Course		1.00						
Cadmium	Source	ID. AC00324	1-UZ 07 0	70,120	1 60	10	11/05/0000	DMM	
Copper			97.9 102	70-130	1.00	10	11/25/2023	DIVIV	
l ead			0/ 5	70-130	1.07	10	11/23/2023	DIVIVV	
Zinc			00.7	70-130	0.015	10	11/20/2020	DIVIV	
			00.1	70-100	0.010	10	11/23/2023	DIVIAA	

The contents of this report apply to the sample(s) analyzed in accordance with the Chain of Custody document. In duplication of this report is allowed, except in its entirety

Notes and Definitions

ltem	Definition	
D	Data reported from a dilution	
U	Analyte included in the analysis, but not detected	

Method Reference Acronyms

Colilert	Colilert, IDEXX Laboratories, Inc.
EPA	Manual of Methods for Chemical Analysis of Water and Wastes, USEPA
GS	USGS Techniques of Water-Resources Investigations
НН	Hach Spectrophotometer Procedures Manual
SM	Standard Methods for the Examination of Water and Wastewater
SW	Test methods for Evaluating Solid Waste, SW-846

for JFK

Janet Finegan-Kelly Water Quality Laboratory Manager

Stephen Quintero or Azubike Emenari QA/QC Coordinator

Ada Cou	nty Hig	nway D	District	-			Mateur	Tur			n m 80 %, kny r 404 f 500											
Attn: Steven Turner 3775 Adams Street Garden City, Idaho 83714–64 Tel. (208) 387–6269 Fax (208) 387–6391 Purchase Order: Project: Sampler(s): Lab# Begin End Date End		18 630656 Stormw 54e 14 c r	28 ater-PI Juen T	Urner Chisholm	als	Mainx	Type		210 B	3000	10 D	51.2	.7.	ate - EPA 365.1	Pb - EPA 200.8	Pb, Zn - EPA 200.8	PA 245.2 XX Colliert	AA UMIER PA 180.1	EPA 200.7	EPA 353.2	00 NH3 - D	
Lab#	Begin Date	End Date	Begin Time	End Time	Sample Identification	Sampler Initi	Water	Grab	Composite	BOD ₅ - SM 5	COD - Hach {	TSS - SM 25	TKN - EPA 3	TP - EPA 200	Orthophosph	Total As, Cd,	Diss. Cd Cu,	Total Hg - E	Turbidity - El	Hardness - E	- 20N+EON	NH3 - SM 45(
4003254	11/19/2:2		622	622	231119-206-WG	ST																
Relinquist Hannet	ned by (s	ign)	Date Trar //9/2	e & Time nsferred	Received by (sign)	142	11/101/23		С	omr	nen	ts/S	pec	ial I	nst	ruci	tion	IS:				
											Ħ	Ar	Q	77	32	.4						

 GOG-WC	1-	pi	

Ada Co	unty Hig	hway [District			an a																		
Attn: Steve 3775 Adar Garden Ci Tel. (208) Fax (208) Purchase Project: Sampler(s	Attn: Steven Turner 3775 Adams Street Garden City, Idaho 83714–6 Tel. (208) 387–6269 Fax (208) 387–6391 Purchase Order: Project: Sampler(s): Begin End		Begin End Begin End Begin End						<u>10</u>	Matnx	Тур	8	10 B	D	0C	2	e - EPA 365.1	b - EPA 200.8	р. ∠п - ЕРА 200.8 А 245.2	X Colilert	A 180.1	200.7	A 353.2 1 NH _* - D	
Lab#	Begin Date	End Date	Begin Time	End Time	Sample Identific	cation	Sampler Initia	Water	Grab	Composite	BOD ₅ - SM 52	COD - Hach 8(TSS - SM 254(TKN - EDA 354	TP - EPA 200.	Orthophosphat	Total As, Cd, F	Total Hg - EP	E. Coli - IDEX	Turbidity - EP,	Hardness - EF	NU3+INU2 - E1	Total Contained		
C00324	-(1/19/23	£	314	12:21	231119=206	- WC	ST	×		×	×¥			× × ×	X	× ×	< X		* ?	< ×	\$x	4		
Relinquis	gn)	Date Tran 11/19/2	& Time sferred	Received 12m Bost Rey	by (sign)	342 12	94201	123	Co	ommo	ents/	Spec	ial lı	nstr	uctio	ons:								
coc_wql-pi												ł	FA	Ci	067	32	4			WY2	4			

Ada	County Hig	hway	District	-											1				
Attn: S 3775 A Garder Tel. (20 Fax (20 Purcha Project Sample	teven Turner dams Street City, Idaho 08) 387–6269 08) 387–639 se Order: : er(s):	83714–6 ∋ I	630650 Stormy KnSle Stere	628 vater-PI r) Clau rh TV	istictury VNeV	~	Matrix	Туре		00	0	2 C		- EPA 365.1 - EPA 200.8	, Zn - EPA 200.8	v 245.2 Colifert	180.1	A 200.7 A 252 0	NH ₃ - D
Lab	Begin Date	End Date	Begin Time	End Time	Sample Identification	Sampler Initials	Water	Grab	Composite	COD - Hach 80(TSS - SM 2540	TKN - EPA 351	TP - EPA 200.7	Orthophosphate Total As, Cd, Pb	Diss. Cd Cu, Pb	Total Hq - EPA E. Coli - IDEXX	Turbidity - EPA	Hardness - EP/	NH3 - SM 4500
4€00724	3 11/19/22		.2116	1328	23/119-03-WC	57	×	>	< ×	× .	* *	. *	* >	- ×	××		× 7	Χ Χ	× 2
Reling	uished by (e	ian)	Date	& Time															
Keiing	Musike-	ign)	Tra r 11/19/2_	isferred 3 Noti	Received by (sign)	1603 11	a]=3		Com	mer	nts/S	pecia	al In:	struc	tions	s:			
coc_wql-r			1				#A	200	32	4-	-0';	3						WY24	43

	Ada Co	unty Hig	hway l	District							1	ur						1	4 (1, - 1000 (100 0)			
	Attn: Steven Turner 3775 Adams Street Garden City, Idaho 83714- Tel. (208) 387–6269 Fax (208) 387–6391 Purchase Order: Project: Sampler(s): Lab# Begin End		3714–6	418 630650 Stormy うたい だいら	628 water-PI an Tu Tun ()	mishelm	a is	Matrix	Ту	De	210 B	3000	40 D	51.2	.7	ate - EPA 365.1 Pb - EPA 200.8	Pb, Zn - EPA 200.8	PA 245.2	XX Colilert PA 180.1	:PA 200.7	EPA 353.2 IN NH D	
	Lab#	Begin Date	End Date	Begin Time	End Time	Sample Identification	Sampler Initi	Water	Grab	Composite	BOD, - SM 5	COD - Hach (TSS - SM 25	TKN - EPA 3	TP - EPA 200	Orthophospha Total As, Cd,	Diss. Cd Cu,	Total Hg - E	E. Coli - IDE) Turbidity - EF	Hardness - E	NO ₃ +NO ₂ - E NH ₃ - SM 450	C I-t-F
Æ	20 324-04	11/19/23		0224	1528	231119-11-WC	ST	7.		×	X	×γ	2 X	~ ;	XX	×	7.	L	X	××	X	3
	-0.5			G10 1	1442	23/119-12-WC	51	+		X	X	+ +	4	7	XX	- *	*	x	۲.	k. X	. X.	1 22
	1-06			.0132.	140	231119 -14 - WC	ST	×	1	7	×	x . y	*	×.,	* *	.*.	×	7-	7	. *	×	2
														· · · · · · · · · · · · · · · · · · ·							-	
	Relinquis	hed by (si	gn)	Date	e & Time	Received by (sign)			1	Co	omm	ient	s/Sp	ecia	l Ins	struc	tion	s:				7
1	fist.	While	L	11/19/2	.3 171	6 Bretslag	1716	1/12/23														
	coc_wql-pi							HAC	003	24	·	,4	,-0	, 5,	-0	6	n)) a.e			WY2	24 2-145	

ACHD SAMPLE FILTRATION, SPLITTING, AND COMPOSITING FOR METALS

PAGE 1 OF 2

ſ				· · · · · · · · · · · · · · · · · · ·			
	Sample	Split/Filter Info	Filter Used	Bottle/Lid Lots 47-32, 47-73, 47-29	Bottles S	Split	Comments
41	Lims#: $Acco 324-02$ Location: $A CSTIC$ Sample Date: $11-19-23$ Sample ID: 23119^{-1} -206 wc Lims#: $Acco324-03$ Location: $ACSTIC$ Sample Date: $11-19-23$ Sample ID: $23119-03$	Split Date: $1-19-23$ Start Split: 1462 Start Filter: 1462 Comp Time: 1356 Analyst: $DMM/Liter$ Split Date: $11-19-23$ Start Split: 1620 Start Filter: 1620 Comp Time: 1617	Filter: ⊠Voss ⊠0.45µm □ 1.0µm ⊠5.0µm ☑Other: <u>(0.0µm</u> Filter: ⊠Voss ⊠0.45µm □ 1.0µm ⊠5.0µm ℃Other: <u>(0.0µm</u>	Coll Jug: $47-73$ Comp Jug: $ccoo 23-78$ SS Tubing: $ccoo 44-92$ SS Helper: $55A5$ J Stir Bar: $ccoo 44-99^{(K2)}$ Connector: $ccoo 44-99^{(K2)}$ Coll Jug: $47-32$, $47-88$ Comp Jug: $ccoo 3-6$ SS Tubing: $ccoo 3-6$ SS Helper: $5A8$ J Stir Bar: $ccoo 47-50$	 ☑ Teflon Total ☑ Teflon Diss (F) ☑ Hg CVAA ☑ BOD ☑ TSS ☑ COD ☑ Teflon Total ☑ Teflon Diss (F) ☑ Hg CVAA ☑ BOD ☑ TSS ☑ TDS ☑ TDS ☑ TDS ☑ COD 	⊠TKN ⊠NH₃ ⊠NO _x (F) ⊠Turb □ ⊠TKN ⊠NH₃ ⊠NO _x (F) ⊠ortho-P (F) ⊠Turb □	0.45 um High Capacity color Very black-looking; leaves minimal debris 0.45 um High Capacity Dark minimal debris
\$3	-WC Lims#: <u>Acco324-06</u> Location: <u>ACGTIC</u> Sample Date: <u>11-19-23</u> Sample ID: <u>23119-14</u> -WC	Analyst: DMW/ Wet Split Date: 11-19-23 Start Split: 1728 Start Filter: 1728 Comp Time: 1723 Analyst: DMW/ Met	Filter: ⊠Voss ⊠0.45µm □1.0µm ⊠5.0µm ⊠Other: <u>10, 0µm</u>	Connector: $c c c c + 1 - 89$ Coll Jug: $47 - 32 + 47 - 88 + 47 - 32$ Comp Jug: $c c c c c + 0 - 72$ SS Tubing: $c c c c + 0 - 72$ SS Helper: 5512 Stir Bar: $c c c c c + 1 - 43$ Stir Bar: $c c c c c + 1 - 50$ Connector: $c c c c - 0 - 6$	 ☑Teflon Total ☑Teflon Diss (F) ☑Hg CVAA ☑BOD ☑TSS ☑TDS ☑COD 	□ ⊠TKN ⊠NH₃ ⊠NO _x (F) ⊠ortho-P (F) ⊠Turb □	0.45, un High Capacity Minimal debris (1) of the 16L jugs didn't hav 4 jugs
FU	Lims#: $ACCO324-04$ Location: $ACSTIC$ Sample Date: $11-19-23$ Sample ID: 2311971 $-\omega C$	Split Date: <u>11-19-23</u> Start Split: <u>1752</u> Start Filter: <u>1752</u> Comp Time: <u>1748</u> Analyst: <u>DMW/LDE</u>	Filter: ⊠Voss ⊠0.45µm □1.0µm ⊠5.0µm ⊠Other: <u>10.9µm</u>	Coll Jug: $47-73 47-32_{1}$ Comp Jug: $ccoo23-78$ SS Tubing: $ccoo23-78$ SS Helper: 5517 Stir Bar: $ccoo247-67$ (x2) Connector: $ccoo240-06$	 ☑ Teflon Total ☑ Teflon Diss (F) ☑ Hg CVAA ☑ BOD ☑ TSS ☑ TDS ☑ COD 	⊠TKN ⊠NH3 ⊠ortho-P (F) ⊠Turb □	0.45 cm High Capacity (1) of the 16L jugs missing cert. labe Minimal debris 3 jugs
#5	Lims#: $Acco324-05$ Location: $AcsTC$ Sample Date: $11-19-23$ Sample ID: $23119-12$ -wC	Split Date: <u>11-19-23</u> Start Split: <u>1814</u> Start Filter: <u>1814</u> Comp Time: <u>1811</u> Analyst: <u>omw/URT</u>	Filter: ⊠Voss ⊠0.45µm □1.0µm ⊠5.0µm ⊠Other: <u>ιο.οµm</u>	Coll Jug: <u>47-73 47-88</u> Comp Jug: <u>CCOO 11-6</u> 7 SS Tubing: <u>CCOO 47-</u> 85 SS Helper: <u>55A2</u> Stir Bar: <u>CCOO 47-67</u> Connector: <u>CCOO 47-67</u>	 ☑ Teflon Total ☑ Teflon Diss (F) ☑ Hg CVAA ☑ BOD ☑ TSS ☑ TDS ☑ COD 	⊠TKN ⊠NH₃ ⊠NO _x (F) ⊠ortho-P (F) ⊠Turb □	0145,000 ftigh Capacity 100f the 16L missing cert. Label: minimal debris 3, 1055

39-76 (XZ)

ACHD SAMPLE FILTRATION, SPLITTING, AND COMPOSITING FOR METALS

PAGE 2 OF 2

	Sample	Split/Filter Info	Filter Used	Bottle/Lid Lots	Bottles Split	Comments
46	Lims#: Location: Sample Date: <u>11-19-23</u> Sample-ID:	Split Date: <u>11-19-23</u> Start Split: Start Filter: Comp Time: Analyst: <u>DMW / 10PT</u>	Filter: ⊠Voss ⊠0.45µm □1.0µm ⊠5.0µm ⊠Other: <u>10.0µm</u>	Coll Jug: Comp Jug: SS Tubing: $Ccccre + 7 - 39$ SS Helper: 559 J Stir Bar: $cccce + 7 - 90$ Connector: $ccce + 1 - 96$	Image: System structure Image: System structure Image: System structure Image: System structure <td>Not Not</td>	Not Not
	Lims#: Location: Sample Date: Sample ID:	Split Date: Start Split: Start Filter: Comp Time: Analyst:	Filter: ⊠Voss ⊠0.45µm □1.0µm ⊠5.0µm ⊡Other:	Coll Jug: Comp Jug: SS Tubing: SS Helper: Stir Bar:	Image: System Stress of the system of the	
	Lims#: Location: Sample Date: Sample ID:	Split Date: Start Split: Start Filter: Comp Time: Analyst:	Filter: ⊠Voss ⊠0.45µm □1.0µm ⊠5.0µm □Other:	Coll Jug: Comp Jug: SS Tubing: SS Helper: Stir Bar: Connector:	⊠Teflon Total ⊠TKN ⊠Teflon Diss (F) ⊠NH3 ⊠Hg CVAA ⊠NOx (F) ⊠BOD ⊠ortho-P (F) ⊠TSS ⊠TSS ⊠Turb ⊠TDS □	
	Lims#: Location: Sample Date: Sample ID:	Split Date: Start Split: Start Filter: Comp Time: Analyst:	Filter: ⊠Voss ⊠0.45µm □1.0µm ⊠5.0µm ⊡Other:	Coll Jug: Comp Jug: SS Tubing: SS Helper: Stir Bar: Connector:	⊠Teflon Total ⊠TKN ⊠Teflon Diss (F) ⊠NH₃ ⊠Hg CVAA ⊠NO₅ (F) ⊠BOD ⊠ortho-P (F) ⊠TSS ⊠Turb ⊠TDS □ ⊠COD □	
	Lims#: Location: Sample Date: Sample ID:	Split Date: Start Split: Start Filter: Comp Time: Analyst:	Filter: ⊠Voss ⊠0.45µm □1.0µm ⊠5.0µm □Other:	Coll Jug: Comp Jug: SS Tubing: SS Helper: Stir Bar: Connector:	⊠Teflon Total ⊠TKN ⊠Teflon Diss (F) ⊠NH₃ ⊠Hg CVAA ⊠NOx (F) ⊠BOD ⊠ortho-P (F) ⊠TSS ⊠Turb ⊠TDS □ ⊠COD □	

Technical Memorandum

1290 W. Myrtle St. Suite 340 Boise, ID 83702

Phone: 801.316.9859

- Prepared for: Ada County Highway District
- Project Title: NPDES Phase I Stormwater Support WY 2024
- Project No.: 159103

Technical Memorandum

- Subject: ACHD Phase I Storm Event Report for February 1, 2024
- Date: April 23, 2024
- To: Monica Lowe
- Cc: Steven Turner Kristen Chisholm
- From: Zuly Lapa, Project Engineer
- Prepared by: Zuly Lapa, EIT, Project Engineer

Reviewed by: Melissa Jannusch, PE, Project Manager

Limitations:

This document was prepared solely for ACHD in accordance with professional standards at the time the services were performed and in accordance with the contract between ACHD and Brown and Caldwell dated October 10, 2023. This document is governed by the specific scope of work authorized by ACHD; it is not intended to be relied upon by any other party except for regulatory authorities contemplated by the scope of work. We have relied on information or instructions provided by ACHD and other parties and, unless otherwise expressly indicated, have made no independent investigation as to the validity, completeness, or accuracy of such information.

Section 1: Introduction

The Environmental Protection Agency Region 10 reissued a Municipal Separate Storm Sewer System Phase I National Pollutant Discharge Elimination System Permit (NPDES Permit), effective October 1, 2021, to Ada County Highway District (ACHD), Boise City, Ada County Drainage District No. 3, Idaho Transportation Department District 3, Boise State University, and Garden City. Under the NPDES Permit, Permittees are required to continue to conduct wet weather stormwater outfall monitoring and subwatershed monitoring. Four outfall monitoring sites (Lucky, Whitewater, Main, and Americana) and one subwatershed monitoring site (AS_6) have been established. The AS_6 site represents a subwatershed located within the Americana watershed. At each site, a minimum of three composite and three grab samples will be collected during Water Year (WY) 2024 (October 1, 2023, through September 30, 2024). The following storm event report summarizes stormwater sampling results from the February 1, 2024, storm event.

Section 2: Project Status

Table 2-1 is a summary of the sample types collected to date for WY 2024 Phase I Stormwater Outfall Monitoring. When samples are qualified, additional samples will be attempted from subsequent storms to collect unqualified samples.

Table 2-1. WY 2024 Samples Collected												
Date	Lucky	Whitewater	Main	Americana	AS_6							
October 10, 2023	G, C ^{1,2}	G		G, C ³								
November 19, 2023	G, C	G, C	G, C	G4, C	G, C							
February 1, 2024	G₅, C	G ⁵ , C ⁶	G⁵, C	G⁵, C	G⁵, C							
Unqualified Samples:	2G, 2C	2G, 1C	1G, 2C	1G, 2C	1G, 2C							
Samples Remaining:	1G, 1C	1G, 2C	2G, 1C	2G, 1C	2G, 1C							

Notes:

-- = no samples taken

C = composite sample

G = grab sample

¹Composite samples qualified due to lack of representativeness (50%–75%).

² Incomplete water quality analysis due to low composite sample volume.

³ Composite samples qualified due to lack of representativeness (50%-75%) of the calculated flow volume.

⁴ Grab sample qualified due to incomplete field parameter collection.

⁵ E. coli sample qualified due to exceeded hold time.

⁶ Composite sample rejected due to automatic sampler triggering prior to storm event runoff. The subsamples taken prior to the event represented more than 10% of the composite volume.

Section 3: Storm Event Summary

The February 1, 2024, storm event and the subsequent preparation and sampling efforts are detailed in the following sections.

3.1 Storm Detail

A summary of the forecast on which monitoring decisions were based is detailed below. The sampling event communication form that describes the forecast and summarizes the decision-making process from February 1, 2024, is included in Attachment A for reference.

Wednesday, January 31, 2024 (Sampling Event Communication and Set Up)

- On the morning of January 31, the National Weather Service issued a forecast for widespread rain in the Boise area, starting February 1 at 0500 and ending on February 2 at 1100. The chance of precipitation was greater than 90%, with 0.50 inches of precipitation forecasted.
- Setup was accomplished in the afternoon of January 31. An expected precipitation depth of 0.3 inches was used to set trigger volumes at monitoring stations. A runoff calculations worksheet showing how the trigger volumes were calculated is included in Attachment A.

Thursday, February 1, 2024 to Friday, February 2, 2024 (Storm Event)

- Moderate rain first started at approximately February 1 at 1607 and ended on February 2 at 1305.
- Precipitation totals ranged between 0.31 and 0.37 inches at local rain gauges.

Flow measurements and precipitation data are listed in Table 1 along with a sampling summary. Hydrograph for the Lucky, Whitewater, Main, Americana and AS_6 site showing flow, rain, and sample collection data are included in Attachment B.

3.2 Sampling Summary

Lucky, Whitewater, Main, Americana and AS_6 monitoring stations were set up on January 31, to collect flow-proportional composite samples during the storm. Sampler enable conditions were programed into the Lucky, Whitewater, Main and Americana flowmeters. A site-specific velocity cutoff value was programmed into AS_6 flowmeter. Setup and sampling information are included in Table 1. The field forms completed during setup/shutdown and sampling are included in Attachment C.

Grab Samples

Two, two-member teams mobilized to collect stormwater runoff grab samples and verify operation of the automatic sampling equipment on February 1 at 1800. Grab samples for Lucky, Whitewater, Main, Americana, and AS_6 were submitted to the West Boise Water Quality Lab (WQL) at 2032 on February 1.

Results for grab samples, including field parameter and analytical data, are included in Table 2. Laboratory analytical reports are included in Attachment D.

Composite Samples

Composite samples were collected at the Main, Americana and AS_6 monitoring station and submitted to the WQL at 1101 and 1102 on February 2. The composite samples at Lucky and Whitewater monitoring stations were submitted to the WQL at 1154 on February 2.

Analytical results are shown in Table 2 and pollutant loading estimates for the event are detailed in Table 3. Laboratory analytical reports are included in Attachment D.

Brown AND Caldwell

Section 4: Quality Assurance/Quality Control

A summary of quality control samples collected during the February 1, 2024, storm event is presented below in Table 4-1. A field blank and field duplicate was collected from the Lucky monitoring station and a lab duplicate/composite split was collected from the Whitewater monitoring station. The analytical results for these samples are included in Table 4-1.

Table 4-1. Quality Control Samples											
Sample ID	Sample Type	Parent Sample	Conclusions								
240201-14-001	Field blank	Lucky grab	No <i>E. coli</i> detection was reported in the field blank.								
240201-14-101	Field duplicate	Lucky grab	Relative percent difference was not within the acceptable range. Field duplicate qualified due to exceeding <i>E. coli</i> hold time.								
240201-11-103	Lab duplicate/composite split	Whitewater composite	The Whitewater composite parent sample was rejected due to non- stormwater subsamples, leading to an inaccurate relative percent difference.								

Data quality objectives for this storm were evaluated and tracked using the data validation review checklist included in Attachment A.

An acceptable composite sample represents at least 75 percent of the total discharge or at least 6 hours of the storm duration. All composite samples, except for Whitewater, met the criteria. However, all the grab samples, including the QC field duplicate were qualified due to *E. coli* exceeding hold time. A grab sample is qualified if the sample is prepared 8 to 16 hours after sample collection. Samples are rejected if prepared 16 hours or later after sample collection. All samples were prepared within approximately 12 hours of sample collection and are therefore qualified.

Prior to the start of the storm precipitation or runoff, five subsamples were successfully collected by the automatic sampler at the Whitewater monitoring site. These subsamples are considered non-stormwater, as there was no evidence of flow or precipitation during the morning of January 31st through the afternoon of February 1st. Following the SWOMP guidelines, calculations were conducted to determine if the non-stormwater subsample volume accounted for 10% of the total composite sample volume. The non-stormwater composite subsamples accounted for 12% of the total composite sample volume (see Table 4-2), rejecting the Whitewater composite sample.

Table 4-2. Non-Stormwater Subsample Evaluation										
Composite Sample Volume (ft ³) Non-Stormwater Subsample Volume (ft ³) Non-stormwater Subsa										
74,325	8,744	12 %								

Section 5: Notes and Recommendations

Whitewater

The sampling team identified the automatic sampler's clock was not synchronized with the flowmeter, resulting in incorrect subsample times displayed on the sampler. The sampling team recorded actual composite subsample times from the flow meter prior to submitting the chain of custody form to the WQL. Additionally, the five subsamples collected before the start of storm flow were due to a flowmeter programming error. It was determined the STORM EVENT and SAMPLER ENABLE equations were assigned the wrong threshold conditions. Specifically, STORM EVENT had the threshold condition assigned rather than the timetable condition. SAMPLER ENABLE had the timetable equation set. Therefore, the flowmeter was incorrectly programmed to enable the sampler 24 hours a day and pull a sample every 2185 cubic feet

without a minimum level condition. The early subsamples appear to be equally spaced apart because of the poor velocity signal, which resulted in the velocity reading a constant value before the start of storm flow. In the case of poor velocity signal readings, the flowmeter will continue to record the last velocity reading until it is able to get another valid reading. For this reason, the sampler was collecting subsamples before increased levels as expected during storm flows.

AS_6

After collecting the grab sample at AS_6, the sampling team noticed a build-up of leaves on the sensor. The sampling team immediately cleared the sensor, and flow started moving rapidly. The removal of leaves seemed to normalize the flow.

Data Tables

TAB-1 ACHD_240201 SER PI SER_159103_FINAL

Table 1. Sampling and Flow Summary												
	Lucky	Whitewater	Main	Americana	AS_6							
Grab samples collected and submitted?	YES	YES	YES	YES	YES							
Composite samples collected and submitted?	YES	YES	YES	YES	YES							
Trigger volume (gal or ft ³)	7899 gal	2185 ft ³	9313 gal	8071 ft ³	601 ft ³							
Velocity cutoff (fps)					0.02							
Sampler enable condition (in)	Level > 2.68 "	Level > 2.55 " ⁴	Level > 2.06"	Level > 6.46"								
Runoff start time	1747 ¹	1647 ¹	1657 ¹	1607 ¹	1823 ¹							
Grab sample collection time	1825	1859	1815	1841	1906							
Composite sample stop time	0926	1016	0757	0936	0936							
Runoff stop time	1135 ²	1305 ²	1132 ²	1220 ²	1108 ²							
Volume of discharge sampled (ft ³)	12,963	74,325 ³	17,733	216,570	13,220							
Volume of non-stormwater subsamples (ft ³)		8,744										
Total runoff volume (ft ³)	14,425	71,141	19,927	260,647	15,912							
Percent of storm flow sampled (%)	90%	104% ³	89%	83% 83%								
Percent of non-stormwater volume to total discharge sampled volume (%)		12%										
Composite sample duration (hrs)	14.5	40 ³	13	13.5	10.5							
Storm Precipitation (in)	0.31	0.33	0.31	0.31/0.37	0.31/0.37							
Referenced Rain Gauge	Cynthia Mann	Whitewater	Front	Front/East	Front/East							
Sampler messages (counts): Success	13	36	15	29	24							
Number of composite bottles filled	1	2	1	2	2							
Composite sample volume (Approx.; ml)	7,250 ml	19000 ml	10250 ml	14500 ml	24400 ml							

Notes:

– = No data.

 $^{\rm 1}\, Storm$ runoff started on 2/1/24

 2 Storm runoff ended on 2/2/24

³ Non stormwater samples were collected prior to the start of storm percipitation or runoff

⁴ Programming error occurred at setup

Table 2. Field and Analytical Data Summary																											
			Field Parameters				Analytical Parameters																				
Monitoring	Comula Data	Comple ID Crok	Dissolved		Conductivity	Tomo oroturo	E coli					Turkidiku				Orthophosphate		Nitrate +		Amonio 40401		Cadmium,	Copper,				
Station	Sample Date	Sample ID Grab	Oxygen	μn	Conductivity	y remperature	E. COII	Composito	BODS		CaCO ₃	Turbiuity	155	105	Phosphorus	as P	N	Nitrite as N		Arsenic, totai	dissolved	total	dissolved	dissolved	total	total	dissolved
			mg/L	S.U.	uS/cm	С	mpn/100 mL	Composite	mg/L	mg/L	mg/L	NTU	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Lucky	2/1/2024	240201-03-WG	4.92	7.15	593.29	14.62	<1.0 ^{4J}	240201-03-WC	7.27	39.0	16.0	60.5	18.8	52.8	0.174	0.100	0.173	0.204	0.894	0.85	< 0.0100	0.024	2.0	0.056	0.82	< 0.0100	17.5
Whitewater	2/1/2024	240201-11-WG	8.42	7.60	287.02	11.10	68.9 ^{4J}	240201-11-WC	9.34 ^{1R}	82 ^{1R}	43 ^{1R}	106 ^{1R}	58.4 ^{1R}	139 ^{1R}	0.321 ^{1R}	0.171 ^{1R}	0.169 ^{1R}	0.375 ^{1R}	1.33 ^{1R}	2.4 ^{1R}	< 0.0100 ^{1R}	0.058 ^{1R}	3.9 ^{1R}	0.18 ^{1R}	4.8 ^{1R}	0.0148 ^{1R}	25.7 ^{1R}
Main	2/1/2024	240201-12-WG	10.11	8.03	353.6	6.30	238.2 ^{4J}	240201-12-WC	5.74	77.0	18.3	103	59.8	64.2	0.143	0.0557	0.351	0.209	1.12	1.4	0.012	0.066	3.6	0.084	4.1	0.0112	18.4
Americana	2/1/2024	240201-14-WG	10.05	7.73	552.2	8.34	65.0 ^{4J}	240201-14-WC	6.98	55.0	93.3	89.6	50.7	224	0.213	0.116	0.193	0.905	1.05	3.4	0.016	0.063	3.4	0.090	4.2	<0.0100	17.3
AS_6	2/1/2024	240201-206-WG	9.33	8.03	542.9	5.55	290.9 ^{4J}	240201-206-WC	11.6	108	16.8	143	70.3	116	0.464	0.285	0.159	0.191	1.83	3.0	0.013	0.077	4.5	0.29	6.7	0.0168	10.5

Notes: = No data. ⁴¹ Composite sample rejected due to non stormwater sample volume comprising 10% or more of the the total composite sample volume ⁴¹ E. coli sample qualified due to exceeded hold time
Table 3. Event Pollutant Loading Estimates in Pounds									
Monitoring Station	Event Date	TSS	Total Phosphorus	Ammonia as N	Nitrate + Nitrite as N	TKN			
Lucky	2/1/2024	16.9	0.157	0.156	0.184	0.805			
Whitewater	2/1/2024	168 ^{1R}	0.92 ^{1R}	0.750 ^{1R}	1.08 ^{1R}	3.81 ^{1R}			
Main	2/1/2024	74.4	0.178	0.437	0.260	1.39			
Americana	2/1/2024	825	3.46	3.140	14.7	17.1			
AS_6	2/1/2024	69.8	0.46	0.158	0.190	1.82			

Notes:

 $^{\rm 1R}$ Composite sample rejected due to non stormwater sample volume comprising 10% or more of the the total composite sample volume

	Table 4. QC Sample Summary																						
Date			Туре		BOD5	COD	Hardness as CaCO3		TSS	TDS	Total Phosphorus	Orthophosphate as P	Ammonia as N	Nitrate + Nitrite as N	TKN	Arsenic, tota	Cadmium, dissolved	Cadmium, total	Copper, dissolved	Lead, dissolved	Lead, total	Mercury, total	Zinc, dissolved
2/1/2024	240201-03-WG	240201-03-001	Field Blank	<1.0		-	-	-															-
2/1/2024	240201-03-WG	240201-03-101	Field Duplicate	2 ^{4J}			-	-														-	-
	Calculated	parent/duplicate RPD ¹		100%																		-	-
	A	llowable RPD		40%	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%
2/1/2024	240201-11-WC	240201-11-103	Lab Duplicate/Composite Split	-	8.9	83.0	42.4	113	53.8	140	0.312	0.172	0.170	0.378	1.35	2.4	0.011	0.052	3.7	0.19	4.9	0.0127	26.6
	Calculated	parent/duplicate RPD ²		-	5%	1%	1%	6%	8%	1%	3%	1%	1%	1%	1%	0%	10%	11%	5%	5%	2%	15%	3%
	A	llowable RPD		40%	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%

Notes:

Nouse. ¹ Relative percent difference was not within the acceptable range. Field duplicate qualified due to exceeding E. Coli hold time ² The Whitewater composite parent sample was rejected due to non-stormwater subsamples, leading to an innacurate relative percent difference ⁴ E.coli sample qualified due to enceeded hold time

Attachment A: Supplemental Documents

Sampling Event Communication Form Data Validation Checklist Runoff Calculation Worksheet

SAMPLING EVENT COMMUNICATION FORM

Date: 01/31/2024	Time: 9:39 AM	Initials	: ML
Is there a targeted sampling event du		Yes	
(Or, if it is Friday, is a targeted event e	expected before 5:00 PM Monday?)		

Past 72 hr Precip	0.06"
Date and time of expected event	2/1/2024 5am – 2/2/2024 5am-11am?
Expected amount of precipitation	Up to 0.5"
Percent chance of precipitation	90%
Percent chance of >0.10" over 12 hours	30-40% during Thursday 5am-5Pm

NWS Update

I spoke with Bill from the NWS. They said precip could start as early as 5-8am Thursday morning but are only expecting maybe a tenth throughout the day. Precip expected to pick up in the afternoon and into the evening especially after 5PM. The storm is predicted to be continuous and widespread once it starts with breaks and rain shadowing unlikely. Storm should be over ~5am but could be as late as 11am depending pace of storm.

Targeted Station & Samples								
Lucky	Whitewater	Main	Americana	AS_6	State (Phase II)			
🖾 Grab	🛛 Grab	🖾 Grab	🖾 Grab	🖾 Grab	🖾 Grab			
🛛 Composite	🛛 Composite	🛛 Composite	🛛 Composite	🛛 Composite	oxtimes Composite			

Type of Forecasted Precipitation		
🗆 Light Rain	🛛 Rain	🗌 Rain on Snow
\Box Scattered Showers	\Box Thunder Showers	\Box Snowmelt
□ Other:		

Reasons for Not Targeting a Forecasted Storm and/or Stations

□ Holiday

□ Waiting on Antecedent Dry Period – Expires:

Equipment Concerns:

 \Box Other:

Text Forecast

NWS Forecast for: 2 Miles NNW Garden City ID Issued by: National Weather Service Boise, ID Last Update: 3:29 am MST Jan 31, 2024

Today: Mostly sunny, with a high near 63. Southeast wind 7 to 17 mph, with gusts as high as 26 mph. Tonight: A 20 percent chance of rain after 11pm. Mostly cloudy, with a low around 44. East southeast wind 13 to 15 mph, with gusts as high as 24 mph.

Thursday: Rain. High near 56. Southeast wind 14 to 16 mph, with gusts as high as 25 mph. Chance of precipitation is 90%. New precipitation amounts between a tenth and quarter of an inch possible.

Thursday Night: Rain. Low around 39. Southeast wind 5 to 9 mph becoming light and variable in the evening. Chance of precipitation is 80%. New precipitation amounts between a quarter and half of an inch possible. Friday: Rain likely, mainly before 11am. Mostly cloudy, with a high near 48. West northwest wind 3 to 8 mph. Chance of precipitation is 60%.

Friday Night: A 40 percent chance of rain. Mostly cloudy, with a low around 35.

Saturday: A 30 percent chance of rain, mainly before 11am. Mostly cloudy, with a high near 45. Saturday Night: Mostly cloudy, with a low around 31.

Sunday: Mostly sunny, with a high near 47. Sunday Night: A 40 percent chance of rain, mainly after 11pm. Mostly cloudy, with a low around 35. Monday: A chance of rain and snow. Mostly cloudy, with a high near 49. Chance of precipitation is 50%. Monday Night: A 50 percent chance of rain. Mostly cloudy, with a low around 36. Tuesday: A 50 percent chance of rain. Mostly cloudy, with a high near 49.

Forecast Discussion

National Weather Service Boise ID 243 AM MST Wed Jan 31 2024

.SHORT TERM...Today through Friday night...A pattern shift towards <u>normal</u> late winter conditions is expect on Thursday as the large <u>upper level</u> low reaches the Pacific Northwest. However, until then, unseasonably warm temperatures will continue today with record high temperatures forecast for several valley locations. The approaching Pacific system will enhance the pressure <u>gradient</u> for gusty southeast winds in the Snake Plain today. Gusts are expected to be in the 30-40 mph range.

Expect record temperatures in the Treasure Valley today aid by a much stronger southeasterly winds in response to the approaching **upper level** low. Model guidance has consistently under forecast temperatures the last 6 days and looks to be under forecasting today by another 3 to 5 degrees. Thus, used a bias corrected **analog** which has worked well the last couple of nights. This correction gives a 70% chance of Boise reaching 64 degrees or greater today. The forecast high of 64 would not only break the daily record of 61, but also tie the all-time record of 63 (set on Jan 9, 1953). Temperatures will start to cool down on Thursday with the arrival of widespread clouds and precipitation. A **Public Information Statement**, BOIPNSBOI, includes the updated forecast highs and records.

Fog and stratus has remained persistent across the valleys of Southeast Oregon the last couple of days. However, this should begin to dissipate today with better mixing and increased surface winds ahead of the next system.

A very moist plume of Pacific <u>moisture</u> off the west coast, known as an atmospheric river, associated with an <u>upper level</u> <u>low pressure system</u>, will move inland this afternoon. This will spread the <u>moisture</u> across our area late tonight into Thursday. Snow levels near 7000 feet today will lower to around 6000 feet on Thursday. Accumulating snow will be limited to the mountains. Precipitation totals of up to a half inch in the valleys and an inch in the mountains are expected.

.LONG TERM...Saturday through Wednesday...A weak upper level trough remains over the region Saturday and Sunday continuing the threat for light snow showers in the mountains and a mix of rain and snow in the valleys. The <u>low pressure system</u> over the west coast will again interact with another plume of <u>moisture</u> from the Central Pacific (or Atmospheric River) on Sunday which which looks to spread across our area from the southwest on Monday. Snow levels remain around 4000 feet for snow in the mountains and cold rain in the valleys. There is growing confidence in the system for Monday however, there is quite a large spread on the amount of <u>moisture</u> that makes it into the Intermountain West. Colder but drier conditions follow as the

the region remains on under a <u>large scale</u> <u>trough</u> as the low center continues south along the California coast.

Storm Event QA/QC Checklist – Phase I

STORM DATE 2/1/24							1.19		
A. Event and Data Completeness	Yes	No	N/A	Notes	TO TO TA		1.1		
1. Field data sheets filled out completely and clearly	X								
2. Field parameters reviewed, and any problems/issues addressed	X		1	White	ater F	M and SA charles in	21 6	4 1	
3. All samples collected as specified	X					The She Clocks we	rent sy	nceo di	iring setup
4. All samples delivered to lab promptly (review chain of custody rpts)	X								
5. Inconsistencies/clarifications discussed with sampling team member			X	1					
6. All analytical reports from lab received	×								
B. Validation and Verification Methods	Yes	No	N/A	Notes			13.1		
1. Outliers and unexpected values discussed with lab			×						
2. Appropriate analytical methods used	X								
3. All lab QA samples were within method acceptance criteria	X								
4. All samples reviewed and data qualifiers assigned if needed	X								
5. Data quality objective achieved	×								
C. Specific Storm and Sample QA/QC Criteria	Lucky	Whitewater	Main	Americana	AS_6	Program Criteria	Met	Qualify	Reject
1. Antecedent dry period (inches in previous 72-hours)	0.00	0.00	0.00	0.00	0.00	< 0.11" in 72 hrs	×		
2. Precipitation (inches)	0.31	0.33	0.31	0.31/0.37	0.31/0 37	> 0.10"	X		
3. Sampled amount (% of total run-off)	90%	104-/*	89%	83%	8301	>= 75% or >= 6 hrs: no qualifier			V
4. Composite sample duration (hours)	14.5	40	13	13.5	10.5	>= 50% and <75%: qualify < 50%: reject	X		Xww
4. Ecoli sample holding time (hours)	12	11.5	12	12	12	<=8 hrs: no qualifier >8 and <=16 hrs.: qualify >16 hrs.: reject	ŕ	X	
5. Filtering of samples for dissolved parameter analysis (hours)	3.5	2.0	3.0	2.0	2.0	<= 24 hrs: no qualifier > 24 hrs.: reject	X		
D. Notes				1997 - T					
E. Coli Samples were qualified due to * Whitewater composite rejected due to >10	exceed % fol	tal z	Iolding Sample	g tir L Volu	nes . Ime C	from all sites. Omposed of Non-S	tormuet	.er.	
Reviewed by Steven Turnur Date 34/4/	24		Appro	oved by	Mo	nica houe D	ate4	/24	_

C-163 Updated 220718 TL

Storm Runoff Estimates and Trigger Volumes

- Step 1. Enter runoff coefficients in yellow cells.
- Step 2. Enter expected precipitation depth (in) in blue cell.
- Step 3. Read trigger volumes (**bold**) in green cells.

Expected Precipitation Depth =	0.3
Aliquots per Sample =	17

		Using RC cal	culated from	n flow data
Site	Area		Expected	Trigger
	(ac)	RC	Vol (ft ³)	Vol (ft ³)
Lucky	105	0.157	17952.2	1056
Whitewater	498	0.069	37149.1	2185
Main	79	0.246	21163.6	1245
Main Alt	60	0.200	13068.0	769
Americana	875	0.144	137214.0	8071
AS_6	204	0.046	10219.2	601
State	34	0.160	5924.2	348

Notes:

Calculated RC = Average (precip (ft) / [volume (ft^3) x area (ft^2)])

Where precip (ft) is the measured amount from local rain guage, and volume (ft³) is the measured discharge, and area (ft²) is the watershed area

Expected volume (ft^3) = RC x expected precip (ft) x area (ft^2)

Attachment B: Storm Event Hydrographs

Lucky Hydrograph

Whitewater Hydrograph

Main Hydrograph

Main Hydrograph

Americana Hydrograph

AS_6 Hydrograph

Attachment C: Field Forms

STATION: Personnel:	fuct Jim /	af Chad	Date/Ti	ime On-Site: _	1900	2/1/24				
	Flow Meter Current Status									
Time	Level (in)	Flow (cfs)	Velocity (fps)	Battery (V)	Flow Start (date/time)	Rainfall (in)				
1407	1.96"	2.55		12.8	2/1/24					

VIL

Grab Information									
	Sample ID	Date	Time	Labeled?					
Site E.Coli	240201-03 -WG	2194 4820	HE BS	Ð					
Field Duplicate E.Coli	240201-03101	2124	1830	9					
Field Blank E.Coli	246701-03 -001	2124	1820	I					

*Note: time on bottle for QC samples is 1200

Field Parameters								
Meter number	Time	Temp (C)	D.O. (mg/L)	рН (S.U.)	SpCond (uS/cm)			
1019508	[819	14.62	4.92	7,15	593,29			

MPII

Sampler Current Status			
First Subsample Date/Time			
Last Subsample Date/Time			
# of Subsamples taken	0/0		

0 STATION: Date/Time On-Site: Personnel: 1m

1846

Flow Meter Current Status						
Time	Level (in)	Flow (cfs)	Velocity (fps)	Battery (V)	Flow Start (date/time)	Rainfall (in)
1846	2.79	.27	0.67	-	•	i i

	Grab Info	rmation		
	Sample ID	Date	Time	Labeled?
Site E.Coli	24020111 -WG	2124	1449	ß
Field Duplicate E.Coli	-101		1021	
Field Blank E.Coli	-001			

*Note: time on bottle for QC samples is 1200

Field Parameters						
Meter number	Time	Temp (C)	D.O. (mg/L)	рН (S.U.)	SpCond (uS/cm)	
10/9500	1 855	11.10	8.42	7.60	287.02	
MPII						

Sampler Current Status			
First Subsample Date/Time	05/25 2/1/3 37		
Last Subsample Date/Time	2/1 1504		
# of Subsamples taken	h		

0

STATION:	Main			1
Personnel:	MB, KC	Date/Time On-Site: _	1864	0/1/2.4

Flow Meter Current Status						
Time	Level (in)	Flow (cfs)	Velocity (fps)	Battery (V)	Flow Start (date/time)	Rainfall (in)
1804	3.17"	79.57	O.CM	12.7		

	Gra	ab Info	rmation		
	Sample ID		Date	Time	Labeled?
Site <i>E.Coli</i>	240701-12	-WG	2/1/24	12:15	X
Field Duplicate E.Coli	340201-12	-101	2/1/24	19:18	X
Field Blank E.Coli	240201-12	-001	-1×1221/24	1312	'PK'

*Note: time on bottle for QC samples is 1200

Field Parameters						
Meter numberTimeTempD.O.pHSpCond(C)(mg/L)(S.U.)(uS/cm)						
MP07	1819	6.3	10.11	8.03	353.6	

	Sampler Current Status				
First Subsample Date/Time	NA				
Last Subsample Date/Time					
# of Subsamples taken	NA				

Comments:

main-alternate QC Site. Lucky grab QC Sussouth Successful, so main QC discarded and not submitted to lab. Much

Revised 210924 TL

STATION:	americ	ana				01/01/2030
Personnel: <u>(</u>	NBIK	C	Date/T	ime On-Site: _	1835	000134
		Flov	v Meter Curr	ent Status		
Time	Level (in)	Flow (cfs)	Velocity (fps)	Battery (V)	Flow Star (date/time	t Rainfall
1835	8.54	3.29	0.172	12.1		()

	Grab Info	ormation		
	Sample ID	Date	Time	Labeled?
Site E.Coli	240201-14 -WG	2/1/24	1841	Ľ.
Field Duplicate E.Coli	-101			
Field Blank E.Coli	-001			

*Note: time on bottle for QC samples is 1200

Field Parameters							
Meter number	Time	Temp (C)	D.O.	pH (SU)	SpCond		
MPUT	1845	8.34	10.05	7.73	(us/cm) 5577		

Sampler Current Status			
First Subsample Date/Time	1811	03/01/24	
Last Subsample Date/Time			
# of Subsamples taken	1		

Offsite C 1850

STATION:	AS-6			
Personnel:	MB-KC	Date/Time On-Site:	calorlacay	1855

Flow Meter Current Status							
Time	Level (in)	Flow (cfs)	Velocity (fps)	Battery (V)	Flow Start (date/time)	Rainfall (in)	
1911	4.67	6.71	1.76	12.5		(,	

Grab Information						
	Sample ID	Date	Time	Labeled?		
Site E.Coli	240201-202 -WG	08/01/2024	1900	YZI)		
Field Duplicate E.Coli	-101					
Field Blank E.Coli	-001			Ď		

*Note: time on bottle for QC samples is 1200

Field Parameters							
Meter number	Time	Temp (C)	D.O. (mg/L)	рН (S.U.)	SpCond (uS/cm)		
MPOT	1910	5.55	9.33	8.03	542.9		

	Sampler Current Status					
First Subsample Date/Time	1844 00/01/24					
Last Subsample Date/Time	1909 03/01/24					
# of Subsamples taken	2 (1 missed)					

Missed Sample? First sub sample had ringe even cleaned leaves of ringe tuborey orralte e 1913

Set Up/ Shut Down Form – HACH (Lucky, Main, AS_6)

STATION: Lucley						
SET UP						
Personnel: MB, SJ, TA, ST,	KC Ti	me Lev	rel (in) 🙀 F	low (cfs)	Velocity (fps)	Battery (V)
	-	- 00	.310		(P)	13.0-1
Date/Time31_0H (1:0	R 1121	007		ordhin	0.00	13.6
	1131	Enable Cor	dition or Velo	ocity Cutoff:	2-68-	2.68" @
				Deadband:	1"	
			Trigg	ger Volume:	7899 3	<u>al</u>
 Check date and time on flowmeter and sa Set flowmeter program and sampler prog Set logging interval to 1 minute Start flowmeter program and sampler prog Verify running Comments: 	ampler gram parameter ogram らでれら	rs or len	сь fr	epps .	falling	off
SHUT DOWN						
Berconnel:	Time	Level (in)	Flow (cfs)	Velocity (f	ps) Total (cl	i) Battery (V)
	1230	Decst	0.00	0.00		12.3
Date/Time	Do	wnloaded to:	Steve	ns US	B	
On-Site: <u>2/5/24</u> <u>2.20</u>						
If flow monitoring is complete: Halt program on flowmeter Download flowmeter data Remove flowmeter battery		If c	Datinuing to m Replace flow Reset loggin Change velo Start progra Verify runn	onitor flow: wmeter batter og interval to 1 ocity cutoff to (am ing	y 5 minutes 0.02 fps	

Composite Sample Collection Bottle 1 of 1 Z 1 124 2032

STATION: Personnel:

Date/Time On-Site: _

Halt sampler program		,	
D Put lid on sample bottle; label sample bottle			
Sample ID:	240201-03	, -WC	
Approx Sample Volume (mL):	7250 ml	1 200	
Clarity (ex. Clear, Cloudy, Silty):	clear .		
Color (ex. Clear, Gray, Tan, Brown, Black):	Tan		
QA/QC Sample ID:	• • •	-103	(Time: 1200)

Subsample Information								
Trigger #	Date/Time	Error Message/ Subsample Result	Trigger #	Date/Time	Error Message/ Subsample Result			
1	2/11/24 1942	Success	13	0926	1			
2	211/14 2007		14					
3	2039		15		- the			
4	2059		16					
5	2114		17					
6	2130		18					
7	2148		19					
8	22.09		20					
9	1 2242		21					
10	2/2/24 4:0104		22					
11	0502		23					
12	0734		24					

Comments:

If sampling is complete:

Power off sampler, if separate from flowmeter Keep flowmeter running Add ice to sample transport cooler

- □ Keep flowmeter running
- □ Install new 15L bottle, add ice
- □ Restart program from beginning
- Date/Time Restarted: _____
- U Verify running

	Liquid Height vs. Approximate Sample Volume Conversion Chart									
Liquid Height	Sample Volume	Liquid Height	Sample Volume	Liquid Height	Sample Volume	Liquid Height	Sample Volume	Liquid Height	Sample Volume	
0.5"	400 mL	3.0"	3500 mL	< 5.5"	7250 mL)	8.0"	11000 mL	10.5"	14750 mL	
1.0"	800 mL	3.5"	4250 mL	6.0**	8000 mL	8.5"	11750 mL	11.0"	15500 mL	
1.5"	1400 mL	4.0"	5000 mL	6.5"	8750 mL	9.0"	12500 mL	11.5"	16250 mL	
2.0"	2000 mL	4.5"	5750 mL	7.0"	9500 mL	9.5"	13250 mL	After 12"	1" = 1500 mL	
2.5"	2750 mL	5.0"	6500 mL	7.5"	10250 mL	10.0"	14000 mL	Lab min	8,000 mL	

Set Up/ Shut Down Form – ISCO (Whitewater, Americana, State)

Personnel ST MR TA STVC	Time	Level (in)	Flow (cfs)	Velocity (fps)	Battery (V)
Personnel: (V(G), Th _ (ST _ C)	1:53	1.52	0.11	0.000	
Date/Time Dn-Site: 1/31/24 11:53				· ·	
	Ei	nable Condition:	2.55	**	
		Hysteresis:			
	Flov	w Pulse Interval:	2165		
Dn-Site 조 Replace flowmeter battery, install sampler bat 조 Perform decon. cycle 조 Install 15L sample bottle, with ice 참 Leave bottle lid at site, in a clean re-sealable p	ttery lastic bag	Flowlink (Refer to Set Qirect or A Retrieve of Change W A Change D	o PG 411 or PG Remote; Date/ lata and reviev /ireless Power ata Storage Ra	i 412, if needed) time 4 5 1/3 w recent flow histo Control to Storm tes to 1 minute fo	1/24 11:- ory Event r Level,
On-Site ☑ Replace flowmeter battery, install sampler bat ☑ Perform decon. cycle ☑ Install 15L sample bottle, with ice ☑ Leave bottle lid at site, in a clean re-sealable p ☑ Set sampler program parameters ☑ Check date/time on sampler ☑ Verify all cable and tubing connections ☑ Verify sampler program is running	ttery lastic bag	Flowlink (Refer to Source) or Change W Change W Velocity, Tota Chable Sa equation Set Sample volume	o PG 411 or PG Remote; Date/ data and review /ireless Power ata Storage Ra al Flow, and Flo mpler: On Trig ler Pacing to Fl	i 412, if needed) time 4/55 1/3 w recent flow histo Control to Storm tes to 1 minute fo ow Rate ger, and set Samp ow Paced, and set	1/24 11:- ory Event or Level, der Enable t trigger

Personnel: ST		Time	Level (in)	Flow (cfs)	Velocity (fps)	Battery (V)
		1313	1.84	0.03	0-14	~
Date/Time On-Site: 2/5/24	1313		Downloaded to:	Steven	o USB	
		L				

On-Site	Flowlink (Refer to Flowlink Instructions, if needed)
Replace flowmeter battery	\square (Direct) or Remote; Date/time $2/3$ 1314
Remove battery from sampler	Retrieve data
	🔉 Change Wireless Power Control to Dry Weather
	Change Data Storage Rates to 15 minutes for Level,
	Velocity, Total Flow, and Flow Rate
	🕱 Enable Sampler: Never

STATION: Whitewater Personnel: No. 5 **Composite Sample Collection**

Bottle 1 of 2

Date/Time On-Site: _

8		
240201 -11-10-KC	-WC	
12500		
avidy 1		
Brown		
240201 -11	-103	(Time: 1200)
	240201-11-10-10-10 V2500 Goudy Brown 240201 -11	240201-11-10-10 V2500 Youdy Brown 240201-11 -103

Subsample Information Trigger Date/Time Error Message/ Trigger Date/Time Error Message/ # Subsample Result # Subsample Result 1/2/24

Comments: Samples taken successfully. Timing does not make sense Collected subscripte times from flowmeter to submit to lab, Actual begin time: 211/24 4:100 211/24 2346

Post storm determined FM+SA not syncid for time during setup. ung

If sampling is complete: If continuing sampling (sample bottle change-out): Power off sampler, if separate from flowmeter Keep flowmeter running Add ice to sample transport cooler If continuing sampling (sample bottle change-out): Add ice to sample transport cooler Restart program from beginning Date/Time Restarted: 212-40004 Verify running Verify running

	the second states		Liquid Height	vs. Approxim	ate Sample Volu	ume Conver	sion Chart		
Liquid Height	Sample Volume	Liquid Height	Sample Volume	Liquid Height	Sample Volume	Liquid Height	Sample	Liquid Height	Sample
0.5"	400 mL	3.0"	3500 mL	5.5"	7250 mL	8.0"	11000 mL	10.5"	14750 ml
1.0"	800 mL	3.5"	4250 mL	6.0"	8000 mL	8.5"	11750 mL	11.0"	15500 mL
1.5"	1400 mL	4.0"	5000 mL	6.5"	8750 mL	9.0"	12500 mL	11.5"	16250 mL
2.0"	2000 mL	4.5"	5750 mL	7.0"	9500 mL	9.5"	13250 mL	After 12"	1" = 1500 mL
2.5"	2750 mL	5.0"	6500 mL	7.5"	10250 mL	10.0"	14000 mL	Lab min	8.000 mL

STATION: Whitewater ersonnel:

Date/Time On-Site: 1224 1040 **Composite Sample Collection**

🖻 Halt Sampler program			
Depart Put lid on sample bottle; label sample bottle			
Sample ID:	241201-11-	-WC	
Approx Sample Volume (mL):	10500		
Clarity (ex. Clear, Cloudy, Silty):	Tan ver ploudy		
Color (ex. Clear, Gray, Tan, Brown, Black):	Tan)		
QA/QC Sample ID:		-103	(Time: 1200)

Subsample Information								
Trigger #	Date/Time Sampler Message/ Subsample Result		Trigger #	Date/Time	Sampler Message/ Subsample Result			
1	2/24 0032	Success	13					
2	1 0143		14					
3	0338		15					
4	1511		16					
5	DIONZ		17					
6	0657		18					
7	0736		19		4			
8	0802		20					
9	1823		21					
10	0849		22					
11	0922		23					
12	1016	\downarrow	24					

comments: Date/time on Sampler is incorrect. Real Aubsample times are in the flowmeter,

Delicoant changed on flowmeter 2/2/24 1049

Post-Storm determined Fm+ SA	not syncid for time during setup. und
If sampling is complete:	If continuing sampling (sample bottle change-out):
Power off sampler	Keep flowmeter running
Verify flowmeter is running	Install new 15L bottle; add ice
Add ice to sample transport cooler	Restart program from beginning
r St. Complete COC form: arrange transport to lab	Date/Time Restarted:
	U Verify running

		4.1	Liquid Height	s. Approxim	ate Sample Volu	ume Convers	sion Chart		
Liquid	Sample	Liquid Height	Sample	Liquid Height	Sample Volume	Liquid Height	Sample Volume	Liquid Height	Sample Volume
0.5"	400 mL	3.0"	3500 mL	5.5"	7250 mL	8.0"	11000 mL	10.5"	14750 mL
1.0"	800 mL	3.5"	4250 mL	6.0"	8000 mL	8.5"	11750 mL	11.0"	15500 mL
1.5"	1400 mL	4.0"	5000 mL	6.5"	8750 mL	9.0"	12500 mL	11.5"	16250 mL
2.0"	2000 mL	4.5"	5750 mL	7.0"	9500 mL	9.5"	13250 mL	After 12"	1" = 1500 mL
2.5"	2750 ml	30"	6500 mb	7.5"	10250 mL	10.0"	14000 mL	Lab min	8,000 mL

Set Up/ Shut Down Form – HACH (Lucky, Main, AS_6)

STATION:						
SET UP						
Personnel: ST. TA. M.B. ST	VC	Time	Level (in)	Flow (cfs)	Velocity (fps)	Battery (V)
<u> </u>	12:	41	THE		- 07	
Date/Time	13	.45	L DIA	Co and april	0.61	12.1
On-Site: 1/3/24 13:	:18		1.00	O CO SPAN	0:00	12.0
		Enabl	e Condition or	Velocity Cutoff:	27-55	1010
				Deadband:	I I	Liut
				Trigger Volume:	9313	
CSet logging interval to 1 minute	rogram paramet	ers				
Set logging interval to 1 minute Start flowmeter program and sampler Verify running omments:	rogram paramet	ers				
Set logging interval to 1 minute Start flowmeter program and sampler Verify running omments: HUT DOWN	rogram paramet	ers				
E Set logging interval to 1 minute E Start flowmeter program and sampler E Verify running Somments: IUT DOWN Personnel:5T	rogram paramet program Time	ers Level (ir	n) Flow (cf	s) Velocity (fr	os) Total (cf)	Battery (V)
Set logging interval to 1 minute Start flowmeter program and sampler Verify running Somments:	rogram paramet program Time \32%	Level (ir	n) Flow (cf	s) Velocity (fp	os) Total (cf)	Battery (V)
L Set logging interval to 1 minute L Start flowmeter program and sampler L Verify running omments: HUT DOWN Personnel: ST Date/Time Date: 2 5 24	rogram paramete program Time 1328 Do	Level (ir O. 69 Downloaded t	n) Flow (cf 3 0,00 to: 5400	s) Velocity (fr <u>JPM D. ODD</u> 2015 USB	os) Total (cf)	Battery (V)
CSet logging interval to 1 minute Start flowmeter program and sampler Verify running Domments: IUT DOWN Personnel:	Time	Level (ir O. <u>%</u> pwnloaded 1	1) Flow (cf 3 0.00 to: 5キャンチ	s) Velocity (fr 32M D. ODD 2015 D5B	os) Total (cf)	Battery (V)
Set logging interval to 1 minute Start flowmeter program and sampler Verify running mments: UT DOWN ersonnel:	Time	Level (ir O, %5 Dwnloaded 1	1) Flow (cf 3 0.00 to: 54004	s) Velocity (fr 300 0.000 205 050 monitor flow:	os) Total (cf)	Battery (V)
Set logging interval to 1 minute Start flowmeter program and sampler Verify running mments: UT DOWN ersonnel:	rogram paramet program Time いろこダ Do	Level (ir O. %9 Dwnloaded 1	b) Flow (cf 5 0,00 to: 5400 If continuing to Replace to Replace to	s) Velocity (fr <u>900 D. DD</u> 2015 DSB monitor flow: lowmeter battery	os) Total (cf)	Battery (V)
Set logging interval to 1 minute Start flowmeter program and sampler Verify running comments: HUT DOWN Personnel:	Time	Level (ir O. <u>%</u> pwnloaded 1	1) Flow (cf 3 0,00 to: 5400 If continuing to Replace to Reset log	s) Velocity (fr <u>329 0.000</u> <u>205 056</u> monitor flow: lowmeter battery ging interval to 15 elocity cutoff to 0	os) Total (cf)	Battery (V)
Set logging interval to 1 minute Start flowmeter program and sampler Verify running omments: HUT DOWN Personnel:	Time	Level (ir O. 65 ownloaded t	i) Flow (cf iii 0.00 ico: 54004 iiii Replace f iiii Reset log iiii Change v iiii Start pro	s) Velocity (fp <u>SPM D. DD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u> <u>SOD</u>	ps) Total (cf) minutes 02 fps	Battery (V)

Composite	e Sample Collect	tion	
	- ITime On Site:	Bottle_	1 of 7110
	Date/Time Off-Site.		

STATION:	Ma	in
Personnel:	51	KC

□ Halt sampler program			
Put lid on sample bottle; label sample bottle	51	-WC	
Sample ID:	251240201-12		
Approx Sample Volume (mL):	CESUM Claude	4	
Clarity (ex. Clear, Cloudy, Silty):	D.Hy. Clobba)	
Color (ex. Clear, Gray, Tan, Brown, Black):	Brown	-103	(Time: 1200)
QA/QC Sample ID:			

		Subsamp	ole Information		
rigger	Date/Time	Error Message/ Subsample Result	Trigger #	Date/Time	Error Message/ Subsample Result
#1	2/1/24 14543	Success	13	0700	
2	1903		14	0720	
2	1920		15	0757	
5	1920		16		1
4	1940		17		
5	2012		18		
6	2054		19		
7	2120				
8	2148				
9	1213		21		
10	2301		22		
10			23		
11	1.12.24 0401		24		
12	1 0534		5. C		

If sampling is complete: Power off sampler, if separate from flowmeter Keep flowmeter running Add ice to sample transport cooler	If continuing sampling (sample bottle change-out): Keep flowmeter running Install new 15L bottle, add ice Restart program from beginning Date/Time Restarted: Verify running
	Verify running

				Annanting	to Sample Volu	me Convers	sion Chart		Sample
		Liquid	Liquid Height v	Liquid	Sample	Liquid	Sample	Height	Volume
Liquid	Sample	Height	Volume	Height	Volume	Height 8.0"	11000 mL	10.5"	14750 mL
fleight	400 mL	3.0"	3500 mL	5.5"	8000 mL	8.5"	11750 mL	11.0"	16250 mL
1.0"	800 mL	3.5"	4250 mL	6.5"	8750 mL	9.0"	12500 mL	After 12"	1" = 1500 m
1.5"	1400 mL	4.0"	5750 mL	7.0"	9500 mL	9.5"	14000 mL	Lab min	8,000 mL
2.0"	2750 mL	5.0"	6500 mL	7.5	10250 ML	1 10.0		1	

Set Up/ Shut Down Form – ISCO (Whitewater, Americana, State)

	Time	Level (in)	Flow (cfs)	Velocity (fps)	Battery (V
rsonnel:	Mr26	513	136	1.881	12.5
te/Time	100	0.10	1,00	1.501	
n-Site: 1/31/24 1464					
	En	able Condition:	6.46		
	Elow	Hysteresis:	80710	C	
	FIOW	Puise interval.	00110	1	
×		Flowfiels (Dafe -)	DC 411 or DC	412 if needed)	
1-Site	lor battery	FIOWIINK (Kefer to	Remote: Date/	time $1/31/21$	1411
Replace flowmeter battery, install samp		* Retrieve	data and reviev	v recent flow hist	ory
V Install 151 cample battle with ice	· .	Change V	/ireless Power	Control to Storm	Event
	stic bag Change Data Storage Rates to 1 minute for Level,				
PLeave bottle lid at site, in a clean re-seal	able plastic bag	Change D	ata Storage Ra	tes to 1 minute fo	or Level,
Leave bottle lid at site, in a clean re-seal	able plastic bag	Velocity, Tot	ata Storage Ra al Flow, and Flo malari On Trig	tes to 1 minute fo ow Rate gor, and set Samr	or Level,
Leave bottle lid at site, in a clean re-seal Set sampler program parameters Check date/time on sampler	able plastic bag	Velocity, Tot Velocity, Tot Enable Sa equation	ata Storage Ra al Flow, and Flo mpler: On Trig	tes to 1 minute fo ow Rate ger, and set Samp	or Level, oler Enable
Leave bottle lid at site, in a clean re-seal Set sampler program parameters Check date/time on sampler Verify all cable and tubing connections	able plastic bag	Velocity, Tot Velocity, Tot Enable Sa equation Set Samp	ata Storage Ra al Flow, and Flo mpler: On Trig ler Pacing to Fl	tes to 1 minute fo ow Rate ger, and set Samp ow Paced, and se	or Level, bler Enable t trigger
Leave bottle lid at site, in a clean re-seal Set sampler program parameters Check date/time on sampler Verify all cable and tubing connections Verify sampler program is running	able plastic bag	Velocity, Tot Velocity, Tot Enable Sa equation Set Samp volume	ata Storage Ra al Flow, and Flo mpler: On Trig ler Pacing to Fl	tes to 1 minute fo ow Rate ger, and set Samp ow Paced, and se	or Level, bler Enable t trigger
Leave bottle lid at site, in a clean re-seal Set sampler program parameters Check date/time on sampler Verify all cable and tubing connections Verify sampler program is running	able plastic bag	Velocity, Tot Velocity, Tot Enable Sa equation S Set Samp volume	ata Storage Ra al Flow, and Flo mpler: On Trig ler Pacing to Fl	tes to 1 minute fo ow Rate ger, and set Samp ow Paced, and se	or Level, oler Enable t trigger
Leave bottle lid at site, in a clean re-seal Set sampler program parameters Check date/time on sampler Verify all cable and tubing connections Verify sampler program is running	able plastic bag	Velocity, Tot Velocity, Tot Enable Sa equation Set Samp volume	ata Storage Ra al Flow, and Flo mpler: On Trig ler Pacing to Fl	tes to 1 minute fo ow Rate ger, and set Samp ow Paced, and se	or Level, oler Enable t trigger
Leave bottle lid at site, in a clean re-seal Set sampler program parameters Check date/time on sampler Verify all cable and tubing connections Verify sampler program is running	able plastic bag	Velocity, Tot Velocity, Tot Enable Sa equation Set Samp volume	ata Storage Ra al Flow, and Flo mpler: On Trig ler Pacing to Fl	tes to 1 minute fo ow Rate ger, and set Samp ow Paced, and se	or Level, oler Enable t trigger
Leave bottle lid at site, in a clean re-seal Set sampler program parameters Check date/time on sampler Verify all cable and tubing connections Verify sampler program is running	able plastic bag	Velocity, Tot Velocity, Tot Enable Sa equation Set Samp volume	ata Storage Ra al Flow, and Flo mpler: On Trig ler Pacing to Fl	tes to 1 minute fo ow Rate ger, and set Samp ow Paced, and se	or Level, oler Enable t trigger
Leave bottle lid at site, in a clean re-seal Set sampler program parameters Check date/time on sampler Verify all cable and tubing connections Verify sampler program is running mments:	able plastic bag	Velocity, Tot Velocity, Tot Enable Sa equation Set Samp volume	ata Storage Ra al Flow, and Flo mpler: On Trig ler Pacing to Fl	tes to 1 minute fo ow Rate ger, and set Samp ow Paced, and se	or Level, oler Enable t trigger
Leave bottle lid at site, in a clean re-seal Set sampler program parameters Check date/time on sampler Verify all cable and tubing connections Verify sampler program is running mments:	able plastic bag	Velocity, Tot Velocity, Tot AlEnable Sa equation Set Samp volume	ata Storage Ra al Flow, and Flo mpler: On Trig ler Pacing to Fl	tes to 1 minute fo ow Rate ger, and set Samp ow Paced, and se	or Level, oler Enable t trigger
Leave bottle lid at site, in a clean re-seal Set sampler program parameters Check date/time on sampler Verify all cable and tubing connections Verify sampler program is running mments:	able plastic bag	Velocity, Tot Velocity, Tot Enable Sa equation Set Samp volume	ata Storage Ra al Flow, and Flo mpler: On Trig ler Pacing to Fl	tes to 1 minute fo ow Rate ger, and set Samp ow Paced, and se	or Level, oler Enable t trigger
Leave bottle lid at site, in a clean re-seal Set sampler program parameters Check date/time on sampler Verify all cable and tubing connections Verify sampler program is running mments:	able plastic bag	Velocity, Tot Velocity, Tot Enable Sa equation Set Samp volume	ata Storage Ra al Flow, and Flo mpler: On Trig ler Pacing to Fl Flow (cfs)	tes to 1 minute fo ow Rate ger, and set Samp ow Paced, and se Velocity (fps)	bler Enable t trigger Battery (*
Leave bottle lid at site, in a clean re-seal Set sampler program parameters Check date/time on sampler Verify all cable and tubing connections Verify sampler program is running mments:	Time	Velocity, Tot Velocity, Tot Enable Sa equation Set Samp volume	ata Storage Ra al Flow, and Flo mpler: On Trig ler Pacing to Fl Flow (cfs)	Velocity (fps)	Battery (

On-Site	Direct or Remote; Date/time _ 2/s 1357
Remove battery from sampler	Retrieve data
	Change Data Storage Rates to 15 minutes for Level,
	Velocity, Total Flow, and Flow Rate
	🔁 Enable Sampler: Never

Comments:

1

Composite Sample Collection

STATION: revicana Personnel:

Date/Time On-Site:

Bottle

Halt sampler program Put lid on sample bottle; label sample bottle Sample ID: -WC - 14 Approx Sample Volume (mL): Clarity (ex. Clear, Cloudy, Silty): Color (ex. Clear, Gray, Tan, Brown, Black): QA/QC Sample ID: -103 (Time: 1200)

	Subsample Information						
Trigger #	Date/Time	Error Message/ Subsample Result	Trigger #	Date/Time	Error Message/ Subsample Result		
1	2/1/29/811	Success	13	1/24 22202202			
2	184536	1	14	22422220			
3	19047545		15	2311 7242			
4	1921 -1924		16	23512211			
5	19371921		17	212124 57351			
6	1953+437		18	2/2/13/1045			
7	2013 1953		19	enqui de 10			
8	20382013		20				
9	2103 2039		21				
10	2232105		22				
11	2144 2125		23				
12	2022 2144	Y	24				

Chose to put on new bottle since we had to start program from the beginning.

If sampling is complete: D Power off sampler, if separate from flowmeter

- □ Keep flowmeter running
- □ Add ice to sample transport cooler

- If continuing sampling (sample bottle change-out):

 - Keep flowmeter running Install new 15L bottle; add ice
 - Restart program from beginning' Date/Time Restarted: 2/2/24 101
 - 🔀 Verify running

Liquid Height vs. Approximate Sample Volume Conversion Chart									
Liquid	Sample	Liquid	Sample	Liquid	Sample	Liquid	Sample	Liquid	Sample
Height	Volume	Height	Volume	Height	Volume	Height	Volume	Height	Volume
0.5"	400 mL	3.0"	3500 mL	5.5"	7250 mL	8.0"	11000 mL	10.5"	14750 mL
1.0"	800 mL	3.5"	4250 mL	6.0"	8000 mL	8.5"	11750 mL	11.0"	15500 mL
1.5"	1400 mL	4.0"	5000 mL	6.5"	8750 mL	9.0"	12500 mL	11.5"	16250 mL
2.0"	2000 mL	4.5"	5750 mL	(7.0"	9500 mL	9.5"	13250 mL	After 12"	1" = 1500 mL
2.5"	2750 mL	5.0"	6500 mL	7.5"	10250 mL	10.0"	14000 mL	Lab min	8.000 ml

	Americana
STATION:	file outer
Personnel:	ST. KC

Composite Sample Collection Bottle <u>2 of 2</u> 2/2/24 0940

Date/Time On-Site: ____

Halt sampler program			
Put lid on sample bottle; label sample bottle		KC	
Sample ID:	240201-14-WE	-WC	
Approx Sample Volume (mL):	5000ml		
Clarity (ex. Clear, Cloudy, Silty):	Cloudy		
Color (ex. Clear, Gray, Tan, Brown, Black):	Tan		(=) (0.00)
OA/QC Sample ID:		-103	(Time: 1200)

Subsample Information					
Trigger #	Date/Time	Error Message/ Subsample Result	Trigger #	Date/Time	Error Message/ Subsample Result
1	2/2/24/233	SULLESS	13		
2	0334	1	14		
3	0423		15		
4	0451		16		
5	0538		17		
6	0627		18		
7	0702		19		
8	0724		20		
9	0746		21		
10	0812		22		
11	0848		23		
12	0936		24		

If sampling is complete: Power off sampler, if separate from flowmeter Keep flowmeter running Add ice to sample transport cooler	If continuing sampling (sample bottle change-out): Keep flowmeter running Install new 15L bottle; add ice Restart program from beginning Date/Time Restarted: Verify running
---	---

-	COLUMN TWO IS NOT	1	Liquid Height v	Approxim:	ate Sample Volu	Ime Convers	sion Chart		and the second sec
Liquid	Sample	Liquid	Sample	Liquid	Sample	Liquid Height	Sample Volume	Liquid Height	Sample Volume
Height	400 ml	Height	3500 mL	5.5"	7250 mL	8.0"	11000 mL	10.5"	14750 mL
1.0"	800 mL	3.5"	4250 mL	6.0"	8000 mL	8.5"	11750 mL	11.0"	15500 mL
1.5"	1400 mL	4.0"	5000 mL)	6.5"	8750 mL	9.0"	12500 mL 13250 ml	After 12"	1" = 1500 mL
2.0"	2000 mL	4.5	5750 mL 6500 mL	7.5"	10250 mL	10.0"	14000 mL	Lab min	8,000 mL

Set Up/ Shut Down Form – HACH (Lucky, Main, AS_6)

TATION: AS_6						
SET UP						
Personnel: ST. TA MB ST	KC Tir	ne	Level (in)	Flow (cfs)	Velocity (fps)	Battery (V)
	15	03	6.0	0.0	0.0	12.4
Date/Time On-Site: 1/31/24 1454						
· · · · · ·		Enable	Condition or	Velocity Cutoff:	0.02	
				Deadband: Trigger Volume:	CATO	GOLEE
				ingger volumer	ST	0010.
 Leave bottle lid at site, in a clean re-seala Verify all cable and tubing connections Check date and time on flowmeter and sa Set flowmeter program and sampler program. Set logging interval to 1 minute Start flowmeter program and sampler program. Verify running Comments: Time off 5,74: 1 	ble plastic bag ampler gram parameter ogram 6\Z	'S			2	
SHUT DOWN	16					
Personnel:	Time	Level (in) Flow (cfs) Velocity	(fps) Total (cf) Battery (V)
	0943	0.00	0.0	0,0	0 883	DZ 11.3
Date/Time	Dor	wnloaded t	0: K	ggears		
	L					
If flow monitoring is complete:		f continuing CReplac Reset Chang Start p Verify	to monitor flow: the flowmeter battle logging interval to e velocity cutoff to program running	ery 9 15 minutes 9 0.02 fps		

Composite Sample Collection Bottle 1 of 2

STATION: AS_le Personnel: KC, ST

Date/Time On-Site:

Subsample Information										
Trigger #	Date/Time	Error Message/ Subsample Result	Trigger #	Date/Time	Error Message/ Subsample Result					
1	2/1/24 1846	Rinse error	13	2/1/24 7209	Success					
2	1 1909	Success	14	1 2225						
3	10122		15	2244	42249					
4	1934		16	2308						
5	1946		17	V 7353	distributor survey					
6	9,000		18							
7	2010		19							
8	2039	4493	20							
9	2104		21							
10	2124		22	2						
11	2141		23							
12	2155		24							
Comment	S: Bille no	and has room in a		1 ille i d	11 1 a ciroquam					

comments: Bottle Complitely full to rim. New bottle installed a program restarted.

If sampling is complete:

- D Power off sampler, if separate from flowmeter
- Keep flowmeter running
- □ Add ice to sample transport cooler

If continuing sampling (sample bottle change-out): Keep flowmeter running A Install new 15L bottle, add ice Restart program from beginning Date/Time Restarted: 7/1114 (2535)

Verify running

Liquid Height vs. Approximate Sample Volume Conversion Chart										
Liquid	Sample	Liquid	Sample	Liquid	Sample	Liquid	Sample	Liquid	Sample	
Height	Volume	Height	Volume	Height	Volume	Height	Volume	Height	Volume	
0.5"	400 mL	3.0"	3500 mL	5.5"	7250 mL	8.0"	11000 mL	10.5"	14750 mL	
1.0"	800 mL	3.5"	4250 mL	6.0"	8000 mL	8.5"	11750 mL	11.0"	15500 mL	
1.5"	1400 mL	4.0"	5000 mL	6.5"	8750 mL	9.0"	12500 mL	11.5"	16250 mL	
2.0"	2000 mL	4.5"	5750 mL	7.0"	9500 mL	9.5"	13250 mL	After 12"	1" = 1500 mL	
2.5"	2750 mL	5.0"	6500 mL	7.5"	10250 mL	10.0"	14000 mL	Lab min	8,000 mL	
								15"		

C-189

Composite Sample Collection

STATION: A

Bottle ______ Date/Time On-Site: 2/2/24___/00

of Z

🛛 Halt sampler program								
Put lid on sample bottle; label sample bottle								
Sample ID:	240201 - 206	-WC						
Approx Sample Volume (mL):	5000 ml							
Clarity (ex. Clear, Cloudy, Silty):	Cloudy							
Color (ex. Clear, Gray, Tan, Brown, Black):	Tan							
QA/QC Sample ID:		-103	(Time: 1200)					

Subsample Information										
Trigger #	Date/Time	Error Message/ Subsample Result	Trigger #	· Date/Time	Error Message/ Subsample Result					
1	1/2/24 1235	Success	13							
2	0504	·	14							
3	0554		15		· · · · · · · · · · · · · · · · · · ·					
4	0656		16							
5	0729		17							
6	0751		18							
7	0812		19							
8	0839		20							
9	V 0936	\checkmark	21		T. T					
10			22							
11			23							
12			24		×					

Comments:

If sampling is complete:

- A Power off sampler, if separate from flowmeter Keep flowmeter running A Add ice to sample transport cooler

- If continuing sampling (sample bottle change-out):
 - □ Keep flowmeter running
 - □ Install new 15L bottle; add ice
 - □ Restart program from beginning

Date/Time Restarted: _____

Verify running

			Liquid Height v	s Approxim	ate Sample Volu	me Convers	sion Chart		
Liquid	Sample	Liquid	Sample	Liquid Height	Sample Volume	Liquid Height	Sample Volume	Liquid Height	Sample Volume
0.5"	400 ml	3.0"	3500 mL	5.5"	7250 mL	8.0"	11000 mL	10.5"	14750 mL
1.0"	800 ml	3.5"	4250 mL	6.0"	8000 mL	8.5"	11750 mL	11.0"	15500 mL
1.5"	1400 ml	4.0	5000 m	6.5"	8750 mL	9.0"	12500 mL	11.5"	16250 mL
2.0"	2000 mL	45-	5750 mL	7.0"	9500 mL	9.5"	13250 mL	After 12"	1" = 1500 mL
2.5"	2750 ml	5.0"	6500 mL	7.5"	10250 mL	10.0"	14000 mL	Lab min	8,000 mL

Attachment D: Storm Event Analytical Reports

Report Date: 02/12/2024 16:32

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Samples in this Report

Lab ID	Sample	Sample Description	Matrix	Qualifiers	Date Sampled	Date Received
AC00327-01	ACST1B	240201-03-WG	Water		02/01/2024	02/02/2024
AC00327-02	ACST1B	240201-03-101	Water		02/01/2024	02/02/2024
AC00327-03	ACST1B	240201-03-001	Water		02/01/2024	02/02/2024
AC00327-04	ACST1B	240201-11-WG	Water		02/01/2024	02/02/2024
AC00327-05	ACST1B	240201-12-WG	Water		02/01/2024	02/02/2024
AC00327-06	ACST1B	240201-14-WG	Water		02/01/2024	02/02/2024
AC00327-07	ACST1B	240201-206-WG	Water		02/01/2024	02/02/2024

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Analysis Report

Location:	ACST1	В				Location Description:	240201-0	3-WG		
Date/Time Collecte	d: 02/01/2	2024 18:25	5							
Lab Number:	AC003	27-01				Sample Collector:	T.A			
Sample Type:	Grab					Sample Matrix:	Water			
Analyte Name	Batch	Result	Units	Adjusted MDL *	Method MDL	Analysis Method Reference	Prepared	Analyzed	Analyst Initials	Qualifier
Microbiology E. Coli	B240390	<1.0N	IPN/100 mL	1.0	1.0	IDEXX - Colilert	02/02/24 06:23	2/3/24 8:23	MEC	ΗU
Wet Chemistry Chlorine Screen	B240392	Absent				SM 4500-CL G-2000 mod	02/02/24	2/2/24 7:05	LRF	

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Analysis Report

Location:	ACST1	В				Location Description:	240201-03	3-101		
Date/Time Collected	d: 02/01/2	2024 12:00)							
Lab Number:	AC003	27-02				Sample Collector:	T.A			
Sample Type:	Grab					Sample Matrix:	Water			
Analyte Name	Batch	Result	Units	Adjusted MDL *	Method MDL	Analysis Method Reference	Prepared	Analyzed	Analyst Initials	Qualifier
Microbiology E. Coli	B240390	2.0N	IPN/100 mL	1.0	1.0	IDEXX - Colilert	02/02/24 07:23	2/3/24 8:23	B MEC	н
Wet Chemistry Chlorine Screen	B240392	Absent				SM 4500-CL G-2000 mod	02/02/24	2/2/24 7:18	B LRF	

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Analysis Report

Location:	ACST1	В				Location Description:	240201-03	3-001		
Date/Time Collecte	d: 02/01/2	2024 12:00)							
Lab Number:	AC003	27-03				Sample Collector:	T.A			
Sample Type:	Grab					Sample Matrix:	Water			
Analyte Name	Batch	Result	Units	Adjusted MDL *	Method MDL	Analysis Method Reference	Prepared	Analyzed	Analyst Initials	Qualifier
Microbiology E. Coli	B240390	<1.0N	IPN/100 mL	1.0	1.0	IDEXX - Colilert	02/02/24 07:23	2/3/24 8:23	MEC	ΗU
Wet Chemistry Chlorine Screen	B240392	Absent				SM 4500-CL G-2000 mod	02/02/24	2/2/24 7:18	LRF	

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Analysis Report

Location:	ACST1	В				Location Description:	240201-11	I-WG			
Date/Time Collecter	d: 02/01/2	2024 18:59)								
Lab Number:	AC003	27-04				Sample Collector:	C.S				
Sample Type:	Grab					Sample Matrix:	Water				
Analyte Name	Batch	Result	Units	Adjusted MDL *	Method MDL	Analysis Method Reference	Prepared	Analyz	zed	Analyst Initials	Qualifier
Microbiology E. Coli	B240390	68.9 N	IPN/100 mL	1.0	1.0	IDEXX - Colilert	02/02/24 06:34	2/3/24	8:23	MEC	н
Wet Chemistry Chlorine Screen	B240392	Absent				SM 4500-CL G-2000 mod	02/02/24	2/2/24	7:09	LRF	

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Analysis Report

Location:	ACST1	В				Location Description:	240201-1	2-WG		
Date/Time Collected	d: 02/01/2	2024 18:15								
Lab Number:	AC003	27-05				Sample Collector:	K.C			
Sample Type:	Grab					Sample Matrix:	Water			
Analyte Name	Batch	Result	Units	Adjusted MDL *	Method MDL	Analysis Method Reference	Prepared	Analyzed	Analyst Initials	Qualifier
Microbiology E. Coli	B240390	238.2 M	PN/100 mL	1.0	1.0	IDEXX - Colilert	02/02/24 06:10	2/3/24 8:23	MEC	Н
Wet Chemistry Chlorine Screen	B240392	Absent				SM 4500-CL G-2000 mod	02/02/24	2/2/24 7:05	LRF	

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Analysis Report

Location:	ACST1	В				Location Description:	240201-14	4-WG		
Date/Time Collecte	ed: 02/01/2	2024 18:41								
Lab Number:	AC003	27-06				Sample Collector:	M.B			
Sample Type:	Grab					Sample Matrix:	Water			
Analyte Name	Batch	Result	Units	Adjusted MDL *	Method MDL	Analysis Method Reference	Prepared	Analyzed	Analyst Initials	Qualifier
Microbiology E. Coli	B240390	65.0 N	IPN/100 mL	1.0	1.0	IDEXX - Colilert	02/02/24 06:28	2/3/24 8:23	MEC	Н
Wet Chemistry Chlorine Screen	B240392	Absent				SM 4500-CL G-2000 mod	02/02/24	2/2/24 7:05	LRF	

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Analysis Report

Location:	ACST1	В				Location Description:	240201-20	06-WG		
Date/Time Collecte	d: 02/01/2	2024 19:06								
Lab Number:	AC003	27-07				Sample Collector:	K.C			
Sample Type:	Grab					Sample Matrix:	Water			
Analyte Name	Batch	Result	Units	Adjusted MDL *	Method MDL	Analysis Method Reference	Prepared	Analyzed	Analyst Initials	Qualifier
Microbiology E. Coli	B240390	290.9 M	PN/100 mL	1.0	1.0	IDEXX - Colilert	02/02/24 06:58	2/3/24 8:23	B MEC	н
Wet Chemistry Chlorine Screen	B240392	Absent			· · · · · ·	SM 4500-CL G-2000 mod	02/02/24	2/2/24 7:09) LRF	

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Quality Control Report

Analyte Name	Method Blank Unit	% s Recovery	Recovery Limits	RPD	RPD Limit	Analyzed	Analyst Initials	Qualifier
Microbiology								
Batch: B240390 Blank (B240390-BLK1) E. Coli	Absent					02/03/2024	MEC	
LCS (B240390-BS1) E. Coli			Present			02/03/2024	MEC	
Duplicate (B240390-DUP1) E. Coli	Source ID: AC00327-)7		Pass	128	02/03/2024	MEC	

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Notes and Definitions

ltem	Definition
H	Hold time Exceeded.
U	Analyte included in the analysis, but not detected

Method Reference Acronyms

Colilert	Colilert, IDEXX Laboratories, Inc.
EPA	Manual of Methods for Chemical Analysis of Water and Wastes, USEPA
GS	USGS Techniques of Water-Resources Investigations
НН	Hach Spectrophotometer Procedures Manual
SM	Standard Methods for the Examination of Water and Wastewater
SW	Test methods for Evaluating Solid Waste, SW-846

D For JFK

Janet Finegan-Kelly Water Quality Laboratory Manager

Stephen Quintero or Azubike Emenari QA/QC Coordinator

Aud ood																				
Attn: Steve	en Turner						Matrix	Туг	pe	L	23						12 - 57			
3775 Adan	ns Street	3714-64	18																	
Tel. (208)	387-6269	JI 14: 04	10						-											
Fax (208)	387-6391		6206E6	-00												1				
Purchase v Project:	Order:		Stormw	28 ater-Pl												0.8				
Sampler(s): Kinstein Chishalm					sholm						-			365.1	00.8	A 20				
			Chad	Schv	vend									EPA	PA 2	Ц Ш	o.c lilert	0.1	0.7	- D
			Micho	el B		<u>s</u>				10 B	80 0	20	1.2	te -	ц. 1 1	b, Zn	X Co	A 180	2A 20	NH3
						Initia			e	SM 52	ach 8(1 254	PA 35	zuu. spha	Cd, F	Cu, P	IDEX	Ц Ц	Ш ī	Er
Lab#	Begin Date	End Date	Begin Time	End Time	Sample Identification	pler	Le l		nposi	05 - 5	ч- С МЗ - ЗМ	- SA		- ErA	al As,	P G	il ny	oidity	dness	NS -
Ar noza-	7	Date	THUÇ	TIING		San	Wat	Gral	Con	BOL	COL	TDS	TKA	발	Tota	Diss	о 2 ш	Turt	Hard	S H
	21-101		ie ar		ationical AZ LIP	TA	X										×			
-01	211[24		1825		240W1-03-WG			12									V			
-02	2/1/24		1200		240201-03-101	TA	X	X									*			
55	2/1/24		1200		240201-03-001	TA	X	X									X			
-04	2/1/24		1859		240201-11- Gto WG	CS	X	X									×			
-05	2/1/24		1916-		210721 - 12 - 1416	KC,	¥	X							inere di poten		X	1		
	aliad		1015		$\frac{1}{1}$	F.	×	X									X			
00	2/1/27		1841		240201-14 1061	MU	· · · · · ·	5					_				×			-
-07	2/1/24		1906		240201 - 206-WG	KC	×	7				-								-
	-										-								-	+
10							<u> </u>											į	1	1
Relinquis	shed by (s	ign)	Date Trar	& Time	Received by (sign)				Ca	omm	ents	;/Spe	ecial	Inst	ruct	ions):			

Reinquisned by (sign) Transfe	rred Received by (sign)	Comments/Special Instructions.
Kiele histol 2/1/1024	1957 Jac Shur 2/1/14/1957	
Chapsewand 21/2024	2035 apull Sitt Diani	

WY24

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Samples in this Report

Lab ID	Sample	Sample Description	Matrix Qualifiers	Date Sampled	Date Received
AC00329-01	ACST1C	240201-12-WC	Water	02/02/2024	02/02/2024
AC00329-02	ACST1C	240201-14-WC	Water	02/02/2024	02/02/2024
AC00329-03	ACST1C	240201-206-WC	Water	02/02/2024	02/02/2024
AC00329-04	ACST1C	240201-03-WC	Water	02/02/2024	02/02/2024
AC00329-05	ACST1C	240201-11-WC	Water	02/02/2024	02/02/2024
AC00329-06	ACST1C	240201-11-103	Water	02/02/2024	02/02/2024

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Analysis Report

Location:	ACST1					Location Description:	240201-1	2-WC		
Date/Time Collected Lab Number: Sample Type:	d: 02/01/2 AC003 Compo	2024 18:43 829-01 psite	3 - 02/02/	2024 07:57		Sample Collector: Sample Matrix:	S.T Water			
Analyte Name	Batch	Result	Units	Adjusted MDL *	Method MDL	Analysis Method Reference	Prepared	Analyzed	Analyst Initials	Qualifier
Wet Chemistry			-				-			
Ammonia, as N	B240477	351		35.0	35.0	SM 4500-NH3 D-2011	02/09/24	2/9/24 9:02	ALN	
BOD5	B240404	5.74	mg/L	2.00	2.00	SM 5210 B-2016	02/03/24	2/8/24 9:58	ASE	
Chloride	B240518	12.7	mg/L	0.0800	0.0800	EPA 300.0, Rev. 2.1 (1993)	02/12/24	2/12/24 17:58	BAK	
COD	B240401	77.0	mg/L	7.00	7.00	HH 8000, Standard Method 5220 D	02/03/24	2/3/24 10:18	RKT	
Nitrate-Nitrite, as N	B240479	0.209	mg/L	0.0250	0.0250	EPA 353.2, Rev. 2.0 (1993)	02/09/24	2/9/24 11:13	RKT	
TKN	B240548	1_12	mg/L	0.100	0.100	EPA 351.2, 10-107-06-2-M (Equivalent)	02/15/24	2/16/24 9:56	JAL	
Total Dissolved Solids	B240407	64.2	mg/L	20.0	20.0	SM 2540 C-2015	02/02/24	2/6/24 11:51	ASE	
Total Suspended Solids	B240408	59.8	mg/L	0.900	0.900	SM 2540 D-2015	02/04/24	2/4/24 12:48	CLH	
Turbidity	B240400	103	NTU	1.2	0.3	EPA 180.1, Rev. 2.0 (1993)	02/02/24	2/2/24 13:26	LRF	D
Dissolved Wet Ch	nemistry							(H1)		
Orthophosphate, as P	B240398	0.0557	mg/L	3,00E-3	3,00E-3	EPA 365.1, Rev. 2.0 (1993)	02/02/24	2/2/24 14:25	RKT	
Total Metals										
Mercury	B240440	0.0112	ug/L	0.0100	0.0100	EPA 245.1	02/07/24	2/8/24 8:20	SAS	
Arsenic	B240405	1,4	ug/L	0.070	0.070	EPA 200.8	02/04/24	2/8/24 13:37	DMW	
Cadmium	B240405	0.066	ua/l	0.010	0.010	EPA 200.8	02/04/24	2/8/24 13:37		

Cadmium	B240405	0.066	ug/L	0.010	0.010	EPA 200.8	02/04/24	2/8/24 13:37	DMW
Calcium	B240429	4.17	mg/L	0.0400	0.0400	EPA 200.7	02/06/24	2/8/24 11:51	AMO
Lead	B240405	4.1	ug/L	0.010	0.010	EPA 200.8	02/04/24	2/8/24 13:37	DMW
Magnesium	B240429	1930	ug/L	80.0	80.0	EPA 200.7	02/06/24	2/8/24 11:51	AMO
Phosphorus as P	B240429	0.143	mg/L	0.0120	0.0120	EPA 200.7	02/06/24	2/8/24 11:51	AMO
Hardness	B240429	18.3	mg/L	0.100	0.100	SM 2340 B-2011	02/06/24	2/8/24 11:51	AMO
Dissolved Metals	s								
Cadmium	B240406	0.012	ug/L	0.010	0,010	EPA 200.8	02/04/24	2/4/24 14:36	DMW
Copper	B240406	3.6	ug/L	0.15	0.15	EPA 200.8	02/04/24	2/4/24 14:36	DMW
Lead	B240406	0.084	ug/L	9.00E-3	9.00E-3	EPA 200.8	02/04/24	2/4/24 14:36	DMW

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Analysis Report

Phosphorus as P

Dissolved Metals

Hardness

Cadmium

Copper

Lead

Zinc

B240429

B240429

B240406

B240406

B240406

B240406

0.213

93.3

0.016

0.090

17.3

3.4

mg/L

mg/L

ug/L

ug/L

ug/L

ug/L

Location:	ACST	1C				Location Description:	240201-1	4-WC		
Date/Time Collected	d: 02/01/	2024 18:11	- 02/02/	2024 09:36						
Lab Number:	AC003	329-02				Sample Collector:	S.T			
Sample Type:	Compo	osite				Sample Matrix:	Water			
Analyte Name	Batch	Result	Units	Adjusted MDL *	Method MDL	Analysis Method Reference	Prepared	Analyzed	Analyst Initials	Qualifier
 Wet Chemistry										
Ammonia, as N	B240477	193		35.0	35.0	SM 4500-NH3 D-2011	02/09/24	2/9/24 9:10	ALN	
BOD5	B240404	6.98	mg/L	2.00	2.00	SM 5210 B-2016	02/03/24	2/8/24 9:52	ASE	
Chloride	B240518	64.1	mg/L	0.0800	0.0800	EPA 300.0, Rev. 2.1 (1993)	02/12/24	2/12/24 18:24	BAK	
COD	B240401	55.0	mg/L	7.00	7.00	HH 8000, Standard Method 5220 D	02/03/24	2/3/24 10:18	RKT	
Nitrate-Nitrite, as N	B240479	0.905	mg/L	0.0250	0.0250	EPA 353.2, Rev. 2.0 (1993)	02/09/24	2/9/24 11:14	RKT	
TKN	B240548	1.05	mg/L	0.100	0.100	EPA 351.2, 10-107-06-2-M (Equivalent)	02/15/24	2/16/24 10:01	JAL	
Total Dissolved Solids	B240407	224	mg/L	20.0	20.0	SM 2540 C-2015	02/02/24	2/6/24 11:52	ASE	
Total Suspended Solids	B240408	50.7	mg/L	0,900	0.900	SM 2540 D-2015	02/04/24	2/4/24 12:04	CLH	
Turbidity	B240400	89.6	NTU	1.2	0.3	EPA 180.1, Rev. 2.0 (1993)	02/02/24	2/2/24 13:47	LRF	D
Dissolved Wet Ch	emistry									
Orthophosphate, as P	B240398	0.116	mg/L	3.00E-3	3,00E-3	EPA 365.1, Rev. 2.0 (1993)	02/02/24	2/2/24 14:26	RKT	
Total Metals							÷			
Mercury	B240440	<0.0100	ug/L	0.0100	0.0100	EPA 245.1	02/07/24	2/8/24 8:23	SAS	U
Arsenic	B240405	3.4	ug/L	0.070	0.070	EPA 200.8	02/04/24	2/8/24 13:47	DMW	
Cadmium	B240405	0.063	ug/L	0.010	0.010	EPA 200.8	02/04/24	2/8/24 13:47	DMW	
Calcium	B240429	27.3	mg/L	0.0400	0.0400	EPA 200.7	02/06/24	2/8/24 11:54	AMO	
Lead	B240405	4.2	ug/L	0.010	0.010	EPA 200.8	02/04/24	2/8/24 13:47	DMW	
Magnesium	B240429	6070	ug/L	80.0	80.0	EPA 200.7	02/06/24	2/8/24 11:54	AMO	

* The reported adjusted "MDL" is sample-specific. The analysis MDL as defined by 40 CFR pt 136 App.B. was corrected for dilution, dry weight, or method-defined ML.

0.0120

0.100

0.010

0.15

9.00E-3

0.50

EPA 200.7

SM 2340 B-2011

EPA 200.8

EPA 200.8 EPA 200.8

EPA 200.8

02/06/24

02/06/24

02/04/24

02/04/24

02/04/24

02/04/24

0.0120

0.100

0.010

0.15

9.00E-3

0.50

AMO

AMO

DMW

DMW

2/8/24 11:54

2/8/24 11:54

2/4/24 14:39

2/4/24 14:39

2/4/24 14:39 DMW

2/4/24 14:39 DMW

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Analysis Report

Phosphorus as P

Dissolved Metals

Hardness

Cadmium

Copper

B240429

B240429

B240406

B240406

0.464

0.013

4.5

16.8

mg/L

mg/L

ug/L

ug/L

0.0120

0.100

0.010

0.15

Location:	ACST	1C				Location Description:	240201-2	06-WC		
Date/Time Collected	d: 02/01/	2024 19:09	9 - 02/02/	2024 09:36		·				
Lab Number:	AC003	329-03				Sample Collector:	S.T			
Sample Type:	Compo	osite				Sample Matrix:	Water			
Analyte Name	Batch	Result	Units	Adjusted MDL *	Method MDL	Analysis Method Reference	Prepared	Analyzed	Analyst Initials	Qualifier
Wet Chemistry										
Ammonia, as N	B240477	159		35.0	35.0	SM 4500-NH3 D-2011	02/09/24	2/9/24 9:08	ALN	
BOD5	B240404	11.6	mg/L	2.00	2.00	SM 5210 B-2016	02/03/24	2/8/24 9:47	ASE	
Chloride	B240518	14.5	mg/L	0.0800	0.0800	EPA 300.0, Rev. 2.1 (1993)	02/12/24	2/12/24 19:17	BAK	
COD	B240401	108	mg/L	7.00	7.00	HH 8000, Standard Method 5220 D	02/03/24	2/3/24 10:18	RKT	
Nitrate-Nitrite, as N	B240479	0.191	mg/L	0.0250	0.0250	EPA 353.2, Rev. 2.0 (1993)	02/09/24	2/9/24 11:15	RKT	
TKN	B240548	1.83	mg/L	0.100	0.100	EPA 351.2, 10-107-06-2-M (Equivalent)	02/15/24	2/16/24 10:02	JAL	
Total Dissolved Solids	B240407	116	mg/L	20.0	20.0	SM 2540 C-2015	02/02/24	2/6/24 11:53	ASE	
Total Suspended Solids	B240408	70.3	mg/L	0.900	0.900	SM 2540 D-2015	02/04/24	2/4/24 12:49	CLH	
Turbidity	B240400	143	NTU	1.2	0.3	EPA 180.1, Rev. 2.0 (1993)	02/02/24	2/2/24 14:01	LRF	D
Dissolved Wet Ch	emistry									
Orthophosphate, as P	B240398	0.285	mg/L	3.00E-3	3.00E-3	EPA 365.1, Rev. 2.0 (1993)	02/02/24	2/2/24 14:27	RKT	
Total Metals										
Mercury	B240440	0.0168	ug/L	0.0100	0.0100	EPA 245.1	02/07/24	2/8/24 8:27	SAS	
Arsenic	B240405	3.0	ug/L	0.070	0.070	EPA 200.8	02/04/24	2/8/24 13:50	DMW	
Cadmium	B240405	0.077	ug/L	0.010	0.010	EPA 200.8	02/04/24	2/8/24 13:50	DMW	
Calcium	B240429	3,33	mg/L	0.0400	0.0400	EPA 200.7	02/06/24	2/8/24 11:57	AMO	
Lead	B240405	6.7	ug/L	0.010	0.010	EPA 200.8	02/04/24	2/8/24 13:50	DMW	
Magnesium	B240429	2060	ug/L	80.0	80.0	EPA 200.7	02/06/24	2/8/24 11:57	AMO	

0.29 Lead B240406 ug/L 9.00E-3 9.00E-3 EPA 200.8 02/04/24 2/4/24 14:48 DMW Zinc B240406 10.5 ug/L 0.50 0.50 EPA 200.8 02/04/24 2/4/24 14:48 DMW The reported adjusted "MDL" is sample-specific. The analysis MDL as defined by 40 CFR pt 136 App.B. was corrected for dilution, dry weight, or * method-defined ML.

0.0120

0.100

0.010

0.15

EPA 200.7

SM 2340 B-2011

EPA 200.8

EPA 200.8

02/06/24

02/06/24

02/04/24

02/04/24

2/8/24 11:57 AMO

AMO

DMW

DMW

2/8/24 11:57

2/4/24 14:48

2/4/24 14:48

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Analysis Report

Location:	ACST1	IC				Location Description:	240201-0	3-WC		
Date/Time Collected	I: 02/01/2	2024 19:42	2 - 02/02/	2024 09:26						
Lab Number:	AC003	29-04				Sample Collector:	S.T			
Sample Type:	Compo	osite				Sample Matrix:	Water			
Analyte Name	Batch	Result	Units	Adjusted MDL *	Method MDL	Analysis Method Reference	Prepared	Analyzed	Analyst Initials	Qualifier
Wet Chemistry										
Ammonia, as N	B240477	173		35.0	35.0	SM 4500-NH3 D-2011	02/09/24	2/9/24 9:05	ALN	
BOD5	B240404	7.27	mg/L	2.00	2.00	SM 5210 B-2016	02/03/24	2/8/24 9:43	ASE	
Chloride	B240518	6.25	mg/L	0.0800	0.0800	EPA 300.0, Rev. 2.1 (1993)	02/12/24	2/12/24 19:43	BAK	
COD	B240401	39.0	mg/L	7.00	7.00	HH 8000, Standard Method 5220 D	02/03/24	2/3/24 10:18	RKT	
Nitrate-Nitrite, as N	B240479	0.204	mg/L	0.0250	0.0250	EPA 353.2, Rev. 2.0 (1993)	02/09/24	2/9/24 11:16	RKT	
TKN	B240548	0.894	mg/L	0.100	0.100	EPA 351.2, 10-107-06-2-M (Equivalent)	02/15/24	2/16/24 10:03	JAL	
Total Dissolved Solids	B240407	52.8	mg/L	20.0	20.0	SM 2540 C-2015	02/04/24	2/6/24 11:55	ASE	
Total Suspended Solids	B240408	18.8	mg/L	0.900	0.900	SM 2540 D-2015	02/04/24	2/4/24 13:41	CLH	
Turbidity	B240400	60.5	NTU	1.2	0.3	EPA 180.1, Rev. 2.0 (1993)	02/02/24	2/2/24 13:33	LRF	D
Dissolved Wet Ch	emistry									
Orthophosphate, as P	B240398	0.100	mg/L	3.00E-3	3.00E-3	EPA 365.1, Rev. 2.0 (1993)	02/02/24	2/2/24 14:28	RKT	
Total Metals										
Mercury	B240440	<0.0100	ug/L	0.0100	0.0100	EPA 245.1	02/07/24	2/8/24 7:41	SAS	U
Arsenic	B240405	0.85	ug/L	0.070	0.070	EPA 200.8	02/04/24	2/8/24 13:52	DMW	
Cadmium	B240405	0.024	ug/L	0.010	0.010	EPA 200.8	02/04/24	2/8/24 13:52	DMW	
Calcium	B240429	4.01	mg/L	0.0400	0.0400	EPA 200.7	02/06/24	2/8/24 12:00	AMO	
Lead	B240405	0.82	ug/L	0.010	0.010	EPA 200.8	02/04/24	2/8/24 13:52	DMW	
Magnesium	B240429	1460	ug/L	80.0	80.0	EPA 200.7	02/06/24	2/8/24 12:00	AMO	
Phosphorus as P	B240429	0.174	mg/L	0.0120	0.0120	EPA 200.7	02/06/24	2/8/24 12:00	AMO	
Hardness	B240429	16.0	mg/L	0,100	0,100	SM 2340 B-2011	02/06/24	2/8/24 12:00	AMO	
Dissolved Metals	11									
Cadmium	B240406	<0.0100	ug/L	0.010	0,010	EPA 200.8	02/04/24	2/4/24 14:51	DMW	U
Copper	B240406	2.0	ug/L	0,15	0.15	EPA 200.8	02/04/24	2/4/24 14:51	DMW	
Lead	B240406	0.056	ug/L	9.00E-3	9.00E-3	EPA 200.8	02/04/24	2/4/24 14:51	DMW	
Zinc	B240406	17.5	ug/L	0.50	0.50	EPA 200.8	02/04/24	2/4/24 14:51	DMW	

02/02/24

2/2/24 14:08 LRF

D

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Analysis Report

Location:	ACST	1C				Location Description:	240201-1	1-WC		
Date/Time Collected	d: 02/01/	2024 04:16	5 - 02/02 /	2024 10:16	i					
Lab Number:	AC003	329-05				Sample Collector:	S.T			
Sample Type:	Compo	osite				Sample Matrix:	Water			
Analyte Name	Batch	Result	Units	Adjusted MDL *	Method MDL	Analysis Method Reference	Prepared	Analyzed	Analyst Initials	Qualifier
Wet Chemistry										
Ammonia, as N	B240477	169		35.0	35.0	SM 4500-NH3 D-2011	02/09/24	2/9/24 9:39	ALN	
BOD5	B240404	9.34	mg/L	2.00	2.00	SM 5210 B-2016	02/03/24	2/8/24 9:37	ASE	
Chloride	B240518	35.6	mg/L	0.0800	0.0800	EPA 300.0, Rev. 2.1 (1993)	02/12/24	2/12/24 20:10	BAK	
COD	B240401	82.0	mg/L	7.00	7.00	HH 8000, Standard Method 5220 D	02/03/24	2/3/24 10:18	RKT	
Nitrate-Nitrite, as N	B240479	0.375	mg/L	0.0250	0.0250	EPA 353.2, Rev. 2.0 (1993)	02/09/24	2/9/24 11:17	RKT	
TKN	B240548	1.33	mg/L	0.100	0.100	EPA 351.2, 10-107-06-2-M (Equivalent)	02/15/24	2/16/24 10:04	JAL	
Total Dissolved Solids	B240407	139	mg/L	20.0	20.0	SM 2540 C-2015	02/02/24	2/6/24 11:56	ASE	
Total Suspended Solids	B240408	58.4	mg/L	0.900	0.900	SM 2540 D-2015	02/04/24	2/4/24 12:51	CLH	

Dissolved Wet Chemistry

B240400

106

NTU

1.2

0.3

EPA 180.1, Rev. 2.0

(1993)

Turbidity

Orthophosphate, as P	B240398	0.171	mg/L	3.00E-3	3.00E-3	EPA 365.1, Rev. 2.0 (1993)	02/02/24	2/2/24	14:30	RKT	
Total Metals						W.137					5
Mercury	B240440	0.0148	ug/L	0.0100	0.0100	EPA 245.1	02/07/24	2/8/24	8:30	SAS	
Arsenic	B240405	2.4	ug/L	0.070	0.070	EPA 200.8	02/04/24	2/8/24	13:54	DMW	
Cadmium	B240405	0.058	ug/L	0.010	0.010	EPA 200.8	02/04/24	2/8/24	13:54	DMW	
Calcium	B240429	10.0	mg/L	0.0400	0.0400	EPA 200.7	02/06/24	2/8/24	12:03	AMO	
Lead	B240405	4.8	ug/L	0.010	0.010	EPA 200.8	02/04/24	2/8/24	13:54	DMW	
Magnesium	B240429	4370	ug/L	80.0	80.0	EPA 200.7	02/06/24	2/8/24	12:03	AMO	
Phosphorus as P	B240429	0.321	mg/L	0.0120	0.0120	EPA 200.7	02/06/24	2/8/24	12:03	AMO	
Hardness	B240429	43.0	mg/L	0.100	0.100	SM 2340 B-2011	02/06/24	2/8/24	12:03	AMO	
Dissolved Metals											
Cadmium	B240406	<0.0100	ug/L	0.010	0.010	EPA 200.8	02/04/24	2/4/24	14:53	DMW	U
Copper	B240406	3.9	ug/L	0.15	0.15	EPA 200.8	02/04/24	2/4/24	14:53	DMW	
Lead	B240406	0.18	ug/L	9.00E-3	9.00E-3	EPA 200.8	02/04/24	2/4/24	14:53	DMW	
Zinc	B240406	25.7	ug/L	0.50	0.50	EPA 200.8	02/04/24	2/4/24	14:53	DMW	

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

٦

Analysis Report

	Adjusted Matt	and Analysis Mothod		Analyst
Sample Type:	Composite	Sample Matrix:	Water	
Lab Number:	AC00329-06	Sample Collector:	S.T	
Date/Time Collected:	02/02/2024 04:16 - 02/02/2024 10:16			
Location:	ACST1C	Location Description:	240201-11-103	

				Aujusteu	Methou	Analysis method			Analysi	
Analyte Name	Batch	Result	Units	MDL *	MDL	Reference	Prepared	Analyzed	Initials	Qualifier
Wet Chemistry										
Ammonia, as N	B240477	170		35.0	35.0	SM 4500-NH3 D-2011	02/09/24	2/9/24 9:36	ALN	
BOD5	B240404	8.90	mg/L	2.00	2.00	SM 5210 B-2016	02/03/24	2/8/24 9:34	ASE	
Chloride	B240518	35.6	mg/L	0.0800	0.0800	EPA 300.0, Rev. 2.1 (1993)	02/12/24	2/12/24 20:36	BAK	
COD	B240401	83.0	mg/L	7.00	7.00	HH 8000, Standard Method 5220 D	02/03/24	2/3/24 10:18	RKT	
Nitrate-Nitrite, as N	B240479	0.378	mg/L	0.0250	0.0250	EPA 353.2, Rev. 2.0 (1993)	02/09/24	2/9/24 11:19	RKT	
ТКМ	B240548	1.35	mg/L	0.100	0.100	EPA 351.2, 10-107-06-2-M (Equivalent)	02/15/24	2/16/24 10:06	JAL	
Total Dissolved Solids	B240407	140	mg/L	20.0	20.0	SM 2540 C-2015	02/02/24	2/6/24 11:57	ASE	
Total Suspended Solids	B240408	53.8	mg/L	0.900	0.900	SM 2540 D-2015	02/04/24	2/4/24 12:48	CLH	
Turbidity	B240400	113	NTU	1.2	0.3	EPA 180.1, Rev. 2.0 (1993)	02/02/24	2/2/24 14:16	LRF	D
Dissolved Wet Ch	emistry									
Orthophosphate, as P	B240398	0.172	mg/L	3.00E-3	3.00E-3	EPA 365.1, Rev. 2.0 (1993)	02/02/24	2/2/24 14:31	RKT	
Total Metals										
Mercury	B240440	0.0127	ug/L	0.0100	0.0100	EPA 245.1	02/07/24	2/8/24 8:34	SAS	
Arsenic	B240405	2.4	ug/L	0.070	0.070	EPA 200.8	02/04/24	2/8/24 13:57	DMW	
Cadmium	B240405	0.052	ug/L	0.010	0.010	EPA 200.8	02/04/24	2/8/24 13:57	DMW	
Calcium	B240429	9.88	mg/L	0.0400	0.0400	EPA 200.7	02/06/24	2/8/24 12:06	AMO	
Lead	B240405	4.9	ug/L	0.010	0.010	EPA 200.8	02/04/24	2/8/24 13:57	DMW	
Magnesium	B240429	4290	ug/L	80.0	80.0	EPA 200.7	02/06/24	2/8/24 12:06	AMO	
Phosphorus as P	B240429	0.312	mg/L	0.0120	0.0120	EPA 200.7	02/06/24	2/8/24 12:06	AMO	
Hardness	B240429	42.4	mg/L	0.100	0.100	SM 2340 B-2011	02/06/24	2/8/24 12:06	AMO	
Dissolved Metals										
Cadmium	B240406	0.011	ug/L	0.010	0.010	EPA 200.8	02/04/24	2/4/24 14:56	DMW	
Copper	B240406	3.7	ug/L	0.15	0.15	EPA 200.8	02/04/24	2/4/24 14:56	DMW	
Lead	B240406	0.19	ug/L	9.00E-3	9.00E-3	EPA 200.8	02/04/24	2/4/24 14:56	DMW	
Zinc	B240406	26.6	ug/L	0.50	0.50	EPA 200.8	02/04/24	2/4/24 14:56	DMW	

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Quality Control Report

Analyte Name	Method Blank	Units	% Recovery	Recovery Limits	RPD	RPD Limit	Analyzed	Analyst Initials	Qualifier
Wet Chemistry									
Batch: B240400 Blank (B240400-BLK1) Turbidity	<0.3	NTU					02/02/2024	LRF	U
LCS (B240400-BS1) Turbidity			99.5	90-110			02/02/2024	LRF	
Duplicate (B240400-DUP1) Turbidity	Source ID: AC00	329-02			9.90	25	02/02/2024	LRF	D
Batch: B240401 Blank (B240401-BLK1) COD	<7	mg/L					02/03/2024	RKT	U
LCS (B240401-BS1) COD			95,7	90-110			02/03/2024	RKT	
Duplicate (B240401-DUP1) COD	Source ID: AC00	330-01			0.00	10	02/03/2024	RKT	
Batch: B240404 Blank (B240404-BLK1) BOD5	<2	ma/L					02/08/2024	ASE	U
LCS (B240404-BS1) BOD5			107	84.6-115.4			02/08/2024	ASE	
LCS (B240404-BS2) BOD5			100	84.6-115.4			02/08/2024	ASE	
Duplicate (B240404-DUP1) BOD5	Source ID: BB03	562-02			3.49	30	02/08/2024	ASE	D
Batch: B240407 Blank (B240407-BLK1) Total Dissolved Solids	<20	mg/L					02/06/2024	ASE	U
LCS (B240407-BS1) Total Dissolved Solids			92.4	90-110			02/06/2024	ASE	
Duplicate (B240407-DUP1) Total Dissolved Solids	Source ID: AC00	330-01			1.35	10	02/06/2024	ASE	

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Analyte Name	Method Blank	Units	% Recovery	Recovery Limits	RPD	RPD Limit	Analyzed	Analyst Initials	Qualifier
Wet Chemistry (Contir	nued)	·				_			
Batch: B240408 Blank (B240408-BLK1) Total Suspended Solids	<0.9	mg/L					02/04/2024	CLH	U
LCS (B240408-BS1) Total Suspended Solids			97.1	. 90-110			02/04/2024	CLH	
Duplicate (B240408-DUP1) Total Suspended Solids	Source ID: AC0	0330-01			5.76	20	02/04/2024	CLH	
Duplicate (B240408-DUP2) Total Suspended Solids	Source ID: BB0	3562-01			3.48	20	02/04/2024	CLH	
Batch: B240477 Blank (B240477-BLK1) Ammonia, as N	<35	ug/L					02/09/2024	ALN	U
Blank (B240477-BLK2) Ammonia, as N	<35	ug/L					02/09/2024	ALN	U
LCS (B240477-BS1) Ammonia, as N			101	90-110			02/09/2024	ALN	
LCS (B240477-BS2) Ammonia, as N			103	90-110			02/09/2024	ALN	
Duplicate (B240477-DUP1) Ammonia, as N	Source ID: BB0	3559-02			1.51	10	02/09/2024	ALN	
Duplicate (B240477-DUP2) Ammonia, as N	Source ID: LS0	1853-02			0.108	10	02/09/2024	ALN	
Duplicate (B240477-DUP3) Ammonia, as N	Source ID: BB0	3578-01			0.524	10	02/09/2024	ALN	
Duplicate (B240477-DUP4) Ammonia, as N	Source ID: BB0	3570-04			0.00	10	02/09/2024	ALN	
Matrix Spike (B240477-MS1) Ammonia, as N	Source ID: BE	303559-02	106	80-120			02/09/2024	ALN	
Matrix Spike (B240477-MS2) Ammonia, as N	Source ID: LS	01853-02	106	80-120			02/09/2024	ALN	
Matrix Spike (B240477-MS3) Ammonia, as N	Source ID: BE	303578-01	103	80-120			02/09/2024	ALN	
Matrix Spike (B240477-MS4) Ammonia, as N	Source ID: BE	303570-04	102	80-120			02/09/2024	ALN	
Matrix Spike Dup (B240477-I Ammonia, as N	MSD1) Source	ID: BB03559)-02 104	80-120	1.15	10	02/09/2024	ALN	
Matrix Spike Dup (B240477-I Ammonia, as N	MSD2) Source	ID: LS01853	-02 107	80-120	0.685	10	02/09/2024	ALN	
Matrix Spike Dup (B240477- Ammonia, as N	MSD3) Source	ID: BB03578	3-01 106	80-120	2.14	10	02/09/2024	ALN	

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Analyte Name	Π	lethod Blank	Units	% Recovery	Recovery Limits	RPD	RPD Limit	Analyzed	Analyst Initials	Qualifier
Wet Chemistry (Contin Batch: B240477 (Continue	ued) d)	Course		0.4						
Ammonia, as N	1504)	Source	ID: BB03570	-04 103	80-120	0.553	10	02/09/2024	ALN	
Batch: B240479 Blank (B240479-BLK1) Nitrate-Nitrite, as N		<0.025	mg/L					02/09/2024	RKT	U
Blank (B240479-BLK2) Nitrate-Nitrite, as N		<0.025	mg/L					02/09/2024	RKT	U
Blank (B240479-BLK3) Nitrate-Nitrite, as N		<0.025	mg/L					02/09/2024	RKT	U
LCS (B240479-BS1) Nitrate-Nitrite, as N				99.7	90-110			02/09/2024	RKT	
LCS (B240479-BS2) Nitrate-Nitrite, as N				98.9	90-110			02/09/2024	RKT	
LCS (B240479-BS3) Nitrate-Nitrite, as N				97.7	90-110			02/09/2024	RKT	
Duplicate (B240479-DUP1) Nitrate-Nitrite, as N	Source	ID: BB03	548-02RE1			NR	10	02/09/2024	RKT	
Duplicate (B240479-DUP2) Nitrate-Nitrite, as N	Source	ID: BB03	578-04			2.93	10	02/09/2024	RKT	
Duplicate (B240479-DUP3) Nitrate-Nitrite, as N	Source	ID: LS01	856-02			0.191	10	02/09/2024	RKT	
Duplicate (B240479-DUP4) Nitrate-Nitrite, as N	Source	ID: WB0	2951-06			0.252	10	02/09/2024	RKT	
Duplicate (B240479-DUP5) Nitrate-Nitrite, as N	Source	ID: BB03	584-01			0.814	10	02/09/2024	RKT	
Matrix Spike (B240479-MS1) Nitrate-Nitrite, as N	Source	e ID: BB()3548-02RE	1 99.2	90-110			02/09/2024	RKT	
Matrix Spike (B240479-MS2) Nitrate-Nitrite, as N	Source	e ID: BB(03578-04	95.4	90-110			02/09/2024	RKT	
Matrix Spike (B240479-MS3) Nitrate-Nitrite, as N	Source	e ID: LSC	01856-02	96.4	90-110			02/09/2024	RKT	
Matrix Spike (B240479-MS4) Nitrate-Nitrite, as N	Source	e ID: WB	02951-06	96.5	90-110			02/09/2024	RKT	
Matrix Spike (B240479-MS5) Nitrate-Nitrite, as N	Source	e ID: BB(03584-01	98.3	90-110			02/09/2024	RKT	
Matrix Spike Dup (B240479-N Nitrate-Nitrite, as N	ISD1)	Source I	D: BB03548	-02RE1 97.8	90-110	1.46	10	02/09/2024	RKT	
Matrix Spike Dup (B240479-N Nitrate-Nitrite, as N	ISD2)	Source I	D: BB03578	-04 94.6	90-110	0.730	10	02/09/2024	RKT	

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Analyte Name	Method Blank	Units	% Recovery	Recovery Limits	RPD	RPD Limit	Analyzed	Analyst Initials	Qualifier
Wet Chemistry (Continued)								
Batch: B240479 (Continued) Matrix Spike Dup (B240479-MSD3 Nitrate-Nitrite, as N) Source	ID: LS01856-	-02 98.1	90-110	0.886	10	02/09/2024	RKT	
Matrix Spike Dup (B240479-MSD4 Nitrate-Nitrite, as N) Source	ID: WB02951	1-06 96.3	90-110	0.0725	10	02/09/2024	RKT	
Matrix Spike Dup (B240479-MSD5 Nitrate-Nitrite, as N) Source	ID: BB03584	-01 98.4	90-110	0.0649	10	02/09/2024	RKT	
Batch: B240518 Blank (B240518-BLK1) Chloride	<0.08	mg/L					02/12/2024	BAK	U
Blank (B240518-BLK2) Chloride	<0.08	mg/L					02/13/2024	BAK	U
LCS (B240518-BS1) Chloride			97.6	90-110			02/12/2024	BAK	
LCS (B240518-BS2) Chloride			98.1	90-110			02/13/2024	ВАК	
LCS (B240518-BS3) Chloride			97.6	90-110			02/12/2024	BAK	
Duplicate (B240518-DUP1) Sour Chloride	ce ID: LS01	1859-01			0.0260	10	02/12/2024	BAK	
Duplicate (B240518-DUP2) Sour Chloride	ce ID: ES0	0298-02			0.0302	10	02/13/2024	ВАК	
Duplicate (B240518-DUP3) Sour Chloride	ce ID: LS0 ²	1859-01RE1			0.0989	10	02/13/2024	BAK	D
Matrix Spike (B240518-MS1) So Chloride	urce ID: LS	01859-01	93.6	90-110			02/12/2024	BAK	
Matrix Spike (B240518-MS2) So Chloride	urce ID: ES	00298-02	96.1	90-110			02/13/2024	BAK	
Matrix Spike (B240518-MS3) So Chloride	urce ID: LS	01859-01RE	1 97.1	90-110			02/13/2024	BAK	D
Matrix Spike (B240518-MS4) So Chloride	urce ID: AC	:00329-02	94.4	90-110			02/12/2024	BAK	
Matrix Spike (B240518-MS5) So Chloride	urce ID: AC	00329-02	94.8	90-110			02/13/2024	BAK	
Matrix Spike (B240518-MS6) So Chloride	urce ID: W	200200-05	95.5	90-110			02/13/2024	BAK	
Matrix Spike Dup (B240518-MSD1 Chloride) Source	ID: LS01859	-01 94.0	90-110	0.127	10	02/12/2024	BAK	
Matrix Spike Dup (B240518-MSD2 Chloride) Source	ID: ES00298	3-02 95.7	90-110	0.192	10	02/13/2024	BAK	

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Analyte Name		Method Blank	Units	% Recovery	Recovery Limits	RPD	RPD Limit	Analyzed	Analyst Initials	Qualifier
Wet Chemistry (Contin	ued)									
Batch: B240518 (Continue Matrix Spike Dup (B240518-N Chloride	d) /ISD3)	Source	ID: LS0185	9-01RE1 98.0	90-110	0.388	10	02/13/2024	BAK	D
Batch: B240548										
Blank (B240548-BLK1) TKN		<0.1	mg/L					02/16/2024	JAL	U
Blank (B240548-BLK2) TKN		<0.1	mg/L					02/16/2024	JAL	U
Blank (B240548-BLK3) TKN		<0.1	mg/L					02/16/2024	JAL	U
LCS (B240548-BS1) TKN				100	80-120			02/16/2024	JAL	
LCS (B240548-BS2) TKN				106	80-120			02/16/2024	JAL	
LCS (B240548-BS3) TKN				94.4	80-120			02/16/2024	JAL	
Duplicate (B240548-DUP1) TKN	Source	e ID: ACOO	329-01			0.415	20	02/16/2024	JAL	
Duplicate (B240548-DUP2) TKN	Source	e ID: BB03	570-01			2.83	20	02/16/2024	JAL	D
Duplicate (B240548-DUP3) TKN	Source	e ID: BB03	578-03			1.87	20	02/16/2024	JAL	D
Duplicate (B240548-DUP4) TKN	Source	e ID: LS01	856-05			5.74	20	02/16/2024	JAL	D
Matrix Spike (B240548-MS1) TKN	Sour	ce ID: AC	00329-01	99.7	80-120			02/16/2024	JAL	
Matrix Spike (B240548-MS2) TKN	Sour	ce ID: BB	03570-01	99.2	80-120			02/16/2024	JAL	D
Matrix Spike (B240548-MS3) TKN	Sour	ce ID: BB	03578-03	102	80-120			02/16/2024	JAL	D
Matrix Spike (B240548-MS4) TKN	Sour	ce ID: LS)1856-05	86.1	80-120			02/16/2024	JAL	D
Matrix Spike (B240548-MS5) TKN	Sour	ce ID: WC	00200-03	97.5	80-120			02/16/2024	JAL	
Matrix Spike (B240548-MS6) TKN	Sour	ce ID: WC	00200-04	94.9	80-120			02/16/2024	JAL	
Matrix Spike Dup (B240548-N TKN	(ISD1)	Source	ID: AC0032	29-01 101	80-120	1.39	20	02/16/2024	JAL	
Matrix Spike Dup (B240548-N TKN	(ISD2)	Source	ID: BB0357	70-01 99.6	80-120	0.237	20	02/16/2024	JAL	D

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Analyte Name	Method Blank	Units	% Recovery	Recovery Limits	RPD	RPD Limit	Analyzed	Analyst Initials	Qualifier
Wet Chemistry (Continued))								=
Batch: B240548 (Continued) Matrix Spike Dup (B240548-MSD3)	Source	ID: BB0357	8-03 104	80-120	0.657	20	02/16/2024	JAL	D
Matrix Spike Dup (B240548-MSD4) TKN	Source	ID: LS01856	6-05 92.5	80-120	2.57	20	02/16/2024	JAL	D
Dissolved Wet Chemistry Batch: B240398 Blank (B240398-BLK1) Orthophosphate, as P	<0.003	mg/L					02/02/2024	RKT	U
LCS (B240398-BS1) Orthophosphate, as P			98.7	90-110			02/02/2024	RKT	
Duplicate (B240398-DUP1) Source Orthophosphate, as P	e ID: WB0	2944-06			0.461	10	02/02/2024	RKT	D
Duplicate (B240398-DUP2) Source Orthophosphate, as P	e ID: LS01	852-02			0.270	10	02/02/2024	RKT	D
Matrix Spike (B240398-MS1) Sou Orthophosphate, as P	rce ID: WE	302944-06	103	90-110			02/02/2024	RKT	D
Matrix Spike (B240398-MS2) Sou Orthophosphate, as P	rce ID: LS	01852-02	102	90-110			02/02/2024	RKT	D
Matrix Spike Dup (B240398-MSD1) Orthophosphate, as P	Source	ID: WB0294	14-06 102	90-110	0.249	10	02/02/2024	RKT	D
Matrix Spike Dup (B240398-MSD2) Orthophosphate, as P	Source	ID: LS01852	2-02 102	90-110	0.0492	10	02/02/2024	RKT	D

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Quality Control Report

(Continued)

Analyte Name	Method Blank	Units	% Recovery	Recovery Limits	RPD	RPD Limit	Analyzed	Analyst Initials	Qualifier
Total Metals									
Batch: B240405 Blank (B240405-BLK1)									
Arsenic	<0.070	ug/L					02/08/2024	DMW	U
Cadmium	<0.010	ug/L					02/08/2024	DMW	U
Lead	<0.010	ug/L					02/08/2024	DMW	U
LCS (B240405-BS1) Arsenic			101	85-115			02/08/2024		
Cadmium			101	85-115			02/08/2024	DMW	
Lead			102	85-115			02/08/2024	DMW	
Duplicate (B240405-DUP1) Source	e ID: ACO	0329-01							
Arsenic					2.22	20	02/08/2024	DMW	
Cadmium					2.34	20	02/08/2024	DMW	
Lead					2.48	20	02/08/2024	DIMVV	
Matrix Spike (B240405-MS1) Sou	irce ID: AC	00329-01	07.0						
Arsenic			97.6	70-130			02/08/2024	DMW	
Lead			100	70-130			02/08/2024	DMM	
Motrie Calles Daw (D240405 M0D4)	0						02/00/2024		
Arsenic	Source	ID: AC00329	9-01 98 3	70-130	0.625	20	02/08/2024		
Cadmium			101	70-130	0.665	20	02/08/2024	DMW	
Lead			101	70-130	0.234	20	02/08/2024	DMW	
Batch: B240429									
Blank (B240429-BLK1)									
Calcium	<0.04	mg/L					02/08/2024	AMO	U
Magnesium	<80	ug/L					02/08/2024	AMO	U
Phosphorus as P	<0.012	mg/L					02/08/2024	AMO	U
LCS (B240429-BS1)									
Calcium			102	85-115			02/08/2024	AMO	
Magnesium			103	85-115			02/08/2024	AMO	
Phosphorus as P			101	85-115			02/08/2024	AMO	
Duplicate (B240429-DUP1) Source	ce ID: ACO	0330-01							
Calcium					1.74	20	02/08/2024	AMO	
Phosphorus as P					0.174	20	02/08/2024	AMO	
	12.10				0.174	20	02/00/2024	ANO	
Matrix Spike (B240429-MS1) Sou	Irce ID: AC	00330-01	102	70 120			02/09/2024	440	
Magnesium			102	70-130			02/08/2024	AMO	
Phosphorus as P			101	70-130			02/08/2024	AMO	
Matrix Spike Dup (B240429-MSD1)	Source)-01						
Calcium	Cource		102	70-130	0.0523	20	02/08/2024	AMO	
Magnesium			102	70-130	0.188	20	02/08/2024	AMO	
Phosphorus as P			102	70-130	0.474	20	02/08/2024	AMO	

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Analyte Name	Method Blank	Units	% Recovery	Recovery Limits	RPD	RPD Limit	Analyzed	Analyst Initials	Qualifier
Total Metals (Continued)									
Batch: B240440									
Blank (B240440-BLK1) Mercury	<0.01	ug/L					02/08/2024	SAS	U
LCS (B240440-BS1) Mercury			103	85-115			02/08/2024	SAS	
Duplicate (B240440-DUP1) Sou Mercury	Irce ID: AC00	329-04			NR	20	02/08/2024	SAS	U
Matrix Spike (B240440-MS1) So Mercury	ource ID: AC	00329-04	106	70-130			02/08/2024	SAS	
Matrix Spike Dup (B240440-MSD	1) Source	D: AC00329	9-04						
Mercury			109	70-130	2.55	20	02/08/2024	SAS	· • .
Dissolved Metals									
Batch: B240406									
Blank (B240406-BLK1)									
Cadmium	<0.010	ug/L					02/04/2024	DMW	U
Copper	<0.15	ug/L					02/04/2024	DMW	U
Lead	<0.0090	ug/L					02/04/2024	DMVV	U
Zinc	<0.50	ug/L					02/04/2024	DIVIVV	0
LCS (B240406-BS1)									
Cadmium			103	85-115			02/04/2024	DMW	
Copper			97.2	85-115			02/04/2024	DMW	
Lead			102	85-115			02/04/2024	DMVV	
Zinc			98.7	85-115			02/04/2024	DIVIVV	
Duplicate (B240406-DUP1) Sou	irce ID: AC00	329-02							
Cadmium					14.8	10	02/04/2024	DMW	QC-02
Copper					0.197	10	02/04/2024	DMW	
Lead					1.65	10	02/04/2024	DMW	
Zinc					1.45	10	02/04/2024	DIVIVV	
Matrix Spike (B240406-MS1) Se	ource ID: AC	00329-02							
Cadmium			100	70-130			02/04/2024	DMW	
Copper			92.7	70-130			02/04/2024	DMW	
Lead			97.8	70-130			02/04/2024	DMW	
Zinc			94.2	70-130			02/04/2024	DMW	
Matrix Spike Dup (B240406-MSD	1) Source	ID: AC00329	9-02						
Cadmium	-		99.4	70-130	0.723	10	02/04/2024	DMW	
Copper			93.3	70-130	0.456	10	02/04/2024	DMW	
Lead			99.7	70-130	1.89	10	02/04/2024	DMW	
Zinc			96.0	70-130	1.20	10	02/04/2024	DMW	

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Notes and Definitions

ltem	Definition
D	Data reported from a dilution
QC-02	The RPD is greater than the method acceptance criteria. At least one of the values used to calculate the RPD, is less than or equal to the PQL.
U	Analyte included in the analysis, but not detected

Method Reference Acronyms

Colilert	Colilert, IDEXX Laboratories, Inc.
EPA	Manual of Methods for Chemical Analysis of Water and Wastes, USEPA
GS	USGS Techniques of Water-Resources Investigations
HH	Hach Spectrophotometer Procedures Manual
SM	Standard Methods for the Examination of Water and Wastewater
SW	Test methods for Evaluating Solid Waste, SW-846

for JFK Janet Finegan-Kelly

Janet Finegan-Kelly Water Quality Laboratory Manager

Stephen Quintero or Azubike Emenari QA/QC Coordinator

Attn: Steve	en Turner	nway D	nstrict				Matrix	Туј	pe											
3775 Adar Garden Ci Tel. (208) Fax (208) Purchase Project: Sampler(s	ms Street ity, Idaho 8 387–6269 387–6391 Order: 5):	33714–64)	18 630656 Stormv Kvister Steve	528 vater-PI n Chis n Tu	hulu Soul	10				0.B	00		.2	- EPA 365.1	0 - EPA 200.8	, Zn - EPA 200.8	1245.2 The following to the second	180.1	A 200.7 A 353.2	HN
Lab#	Begin Date	End Date	Begin Time	End Time	Sample Identification	Sampler Initial	Water	Grab	Composite	BOD ₅ - SM 521	COD - Hach 80	TSS - SM 2540 TDS - SM 2540	TKN - EPA 351	TP - EPA 200.7 Orthophosphate	Total As, Cd, Pt	Diss. Cd Cu, Pb	Total Hg - EP/	Turbidity - EPA	Hardness - EP, NO ₃ +NO ₂ - EP	
-01	2/1/24	2/2/24	1843	0757	240201-12-WC	ST	X		×	×	××	1 ×	\times :	x X	×	X	×X	X	x x	~
-02	2/1/24	2/2/24	1311	09H¢	240201-14-WC	ST	×		X	*	XX	. X	×;	<u>x </u>	<u>x</u>	××	X	у́, Х	. X.	×
Relinquisl	hed by (si	ign)	Date Tran	& Time	Received by (sign)				Co	mn	nent	s/Sp	ecia	l Inst	ruc	tions	s:			_
istal	linto	k.	2/2/ 2/2/	D19 zy 110	00 5029 1 April 2-2-24 1 102															

1 .																									92
Ada Cou	nty High	way Di	strict										1												
Attn: Stever 3775 Adams Garden City Tel. (208) 38 Fax (208) 38 Purchase O Project: Sampler(s):	n Turner s Street v, Idaho 83 87–6269 87–6391 rder:	714–641	8 630656 Stormw Stor Kust	28 vater-PI A Tu,	ner.	l	- - -		S	Matrix	Ту	be	10 B	000	00	0 C	7	ie - EPA 365.1	ъ - ЕРА 200.8	b, Zn - EPA 200.8	A 245.2 V C. H	A 180.1	A 200.7	2A 353.2	2-55
Lab# AC00329	Begin Date	End Date	Begin Time	End Time	ş.	Sampl	e Identificati	on	Sampler Initia	Water	Grab	Composite	BOD ₅ - SM 52	COD - Hach 8(TSS - SM 254(TKN _ EDA 35	TP - EPA 200.	Orthophosphat	Total As, Cd, P	Diss. Cd Cu, P	E Ani: INEY	Turbidity - EP/	Hardness - EP	NO3+NO2 - EF	Total Containe
-03	2/2/24	2/2/24	යිරි5	0736	2402	01-201	D-WC		ST	×.		X	X	λ;	K X	. x	X.	X	* ?	× ×		X	×.	ĸХ	2
Relinqu	ished by	(sign)	Da Tr	ite & Tir ansferr	ne ed		Received b	y (sign)					Cor	nme	ents	/Sp	ecia	ıl In	stru	ictie	ons:				
Bristel Ce	hilo		2/2/20 2/2/	1 /DI 124 11	9 02	OF Apido	E Z	2-2-21 1102	1																

AC00329 C-220 WY22

240

Ada Co	unty Hig	ghway [District) ar juniose -	- 4 10-104	
Attn: Stev 3775 Ada Garden C Tel. (208) Fax (208) Purchase Project: Sampler(s	en Turner ms Street ity, Idaho 387–6269 387–639 Order:	83714–64 9 1	18 630650 Stormy Kust Stu	628 vater-Pl in () in Tc	ish olm		Matrix	Ту	pe	38	0		2		- EPA 365.1	- EPA 200.8 7n - EDA 200 8	245.2	connerr Chulor inclus	180.1	200.7	N 303.2 IH _a - D	
Lab# AC00329	Begin Date	End Date	Begin Time	End Time	Sample Identification	Sampler Initials	Water	Grab	Composite	BOD ₅ - SM 5210	COD - Hach 800	TDS - SM 2540 (TKN - EPA 351.	TP - EPA 200.7	Orthophosphate	Dise Cd Cu Ph	Total Hg - EPA	-E. Coli - IDEXX-	Turbidity - EPA	Hardness - EPA	NH3 - SM 4500 N	
-04	2/1/24	2/2/24	1942	0926	240201-03-WC	+AST	X		X	×.	×,	έ×		17	XX	X	×	×	κ,	< x	. ×	A
-05	2/2/24	2/2/24	04110	1016	240201 - 11 - WC	ST	×		X	X	ΧX	X	×	X?	××	. 'X	×	X	х×	×	×	•
-06					-240201-0:11-103 (Dup)																	
																						_
																					•	
Relinquis	ned by (s	ign)	Date Tran	& Time sferred	Received by (sign)				Co	mm	ents	s/Sp	ecia	l Ins	stru	ctio	ns:					_
hister (disto Sæ	h i	2/2/20 2/2/20	24 1/3 21 (15	4 Contraction 9 April 184. 1159 1159	- 11 - 10 - 24 11 - 24 - 24 - 24 - 24 - 24 - 24 - 24 - 24	lan v a lan ssin	ficien duf 11- Volued F n, F	it 10: marco	Vdi ati 3. i f ani	ina ar or or	-, T alu 24	UZ her	ייני טי ר וט ר מ	Spi ndi 03	at ir s−v oH	20 the UC	-102 r	201-	ittz met	e ers	-

A		- C-221	WY24
AC	(NNL?	Ч	

Ada Cou	nty High													5	,Lu d	lif	128	2				
Attn: Stever	n Turner s Street	way Di	STRICT				Matrix	Ту	pe													
Garden City, Idaho 83714–6418 Tel. (208) 387–6269 Fax (208) 387–6391 Purchase Order: 63065628 Project: Stormwater-PI Sampler(s): Struct Turnet Kustin Chusheli										0.8	0				- EPA 365.1	- EPA 200.8	. <u>ZN - EPA 200.8</u> 245.2	Botten (HUNDLS	180.1	1200.7	0H1 - D	
Lab# AC00329	Begin Date	End Date	Begin Time	End Time	Sample Identification	Sampler Initia	Water	Grab	Composite	BOD ₅ - SM 521(COD - Hach 800 TSS - SM 2540	TSS - SM 2540	TKN - FPA 351	TP - EPA 200.7	Orthophosphate	Total As, Cd, Pb	Total Hn . FPA	F. Odi - JOFX	Turbidity - EPA	NO.+NO EP/	NH1 - SM 4500 h	Total Containers
-03	26/24	2/2/24	1335	0731a	240201-2016-WC	ST	X.		X	X	XX	X	X	X	X	K X	X	X	X X	x	X	2
	2/1/24		1969	0936																		
ett	1							_														
+atra																						
										_												
											_											
											_			_							_	
Relinquished by (sign) Date & Time Passived by (sign)																	1					
Krist Vaile			Transferred		a OF Za					Con	1 me	nts/	/Spe	ecia	/ Ins	truc		15:				
Ge	22		2/2/	124 11E	2 Apulol 1/2 2-2-24 1102																	
coc_wql-pi-													- <u> </u>		Ac	.01	3	29				

C-222

1

								N	lochi	find			
Ada County Highway Attn: Steven Turner	District			Matrix	Туре]	**************************************				halfeddinod fer, har an		••
3775 Adams Street Garden City, Idaho 83714– Tel. (208) 387–6269 Fax (208) 387–6391 Purchase Order: Project: Sampler(s):	6418 63065628 Stormwater-PI KHISTIC CLUSH Stuch Turk	ci. J.C	5			10.8	000	0 C 11.2	7 te - EPA 365.1	b - EPA 200.8 b. Zn - EPA 200.8	A 245.2	A 180.1. 24 200.7	PA 353.2) NH _a - D
Lab# Begin End Date Date	Begin End Time Time	Sample Identification	Sampler Initis	Water	Grab	BODs - SM 52	COD - <u>H</u> ach 8 T <u>SS</u> - <u>SM</u> 254	TKN - EPA 35	TP EPA 200. Orthophospha	Total As, Cd, P Diss. Cd Cu, P	Total Hg - EP	Turbidity - EP	NO ₃ +NO ₂ - EI NH ₃ - SM 4500
-04 21/24 212/2	4 1742 0926 24	10201-03-WC	-X-ST	<u>×</u>	X	X	c X	<u>k </u>	1 X	XXX	(x)	K!×	×.× ∛
-05 3/2174 2/2/2	104110 10110124	10201 - 11 - WC	ST	X	X	X	X	XX	XX	× X	XX7	< X .	XX
-06	2H	10201-0:11-103 (Dup)				-		-			-		
							; 		1 1 1	8			
а а п в с													
Relinquished by (sign)	Date & Time Transferred	Received by (sign)		l	c	omm	ents/S	ipecia	l Instri	uctions	 s:		
sister Chinfola Ecoco	2/2/2024 1134 Contraction 2-2-24 2/2/2021 1159 Opulika (1.59)			- If sufficient valume, pliane split 200200 for a duplicate analysis under the run 240201-11-103- If law Volume for 240201-03-WC, pli aissolved Parameters, then any other Dar							iont Nomt	-WC 2 122 122	
- coc_wql-pi			40	U CAI	n, Ple	ase				,	ì		

Azubike Emenari

To:	
Cc:	
Subject:	

Steven Turner; Stephen Quintero Monica Lowe RE: [External] RE: 2/2/24 Lab Report Issue

From: Steven Turner <sturner@achdidaho.org>
Sent: Wednesday, March 13, 2024 1:50 PM
To: Azubike Emenari <AEmenari@cityofboise.org>; Stephen Quintero <SQuintero@cityofboise.org>
Cc: Monica Lowe <mlowe@achdidaho.org>
Subject: [External] RE: 2/2/24 Lab Report Issue

Caution: This email came from outside the city. Use caution before clicking on links, opening attachments, or responding.

Hey lab folks,

Apologies asking for more changes to the 2/1/24 storm, but we noticed a few additional times that needed to be changed to the analysis report. Here is also a <u>rewritten chain of custody</u>.

The following samples need their times adjusted:

- AC00329-03 begin time is 19:09 on 2/1/24 (previously written as 2/2/2024 3:35)
- AC00329-05 begin time is 4:16 on 2/1/24 (previously written as 2/2/2024 04:16)

It's not a big deal if these changes can't be made but let me know when we can expect this document to be sent over.

Again, sorry for the changes. We really appreciate all you do.

Best, **Steven Turner** Environmental Specialist | Environmental Department

Ada County Highway District (ACHD) 3775 Adams Street, Garden City, Idaho 83714 **Phone**: (208)407-4284 <u>www.achdidaho.org</u> *Connect with us on social!* @achdidaho

From: Steven Turner Sent: Tuesday, March 12, 2024 2:17 PM

ACHD SAMPLE FILTRATION, SPLITTING, AND COMPOSITING FOR METALS

PAGE 1 OF 2

Sample	Split/Filter Info	Filter Used	Bottle/Lid Lots	Bottles Split	Comments
Lims#: $\underline{ACO0329-61}$ Location: $\underline{A-CGTLC}$ Sample Date: 2-2-24 Sample ID: $\underline{240261-}$ 1 $\underline{12-WC}$	Split Date: 2-2-24 Start Split: <u>1111</u> Start Filter: <u>1111</u> Comp Time: <u>N/A</u> Analyst: <u>Amo/pect</u>	Filter: ⊠Voss ⊠0.45µm high- capacity ⊠5.0µm ⊠10.0µm	Coll Jug: WA AVAIL Comp Jug: N/A SS Tubing/Helper: CC00047-43 (SSA1) Stir Bar: CC00048-85 Connector:CC00035-68 and CC00041-31	⊠Teflon Total ⊠TKN ⊠Teflon Diss (F) ⊠NH3 ⊠Hg CVAA ⊠NOx (F) ⊠BOD ⊠ortho-P ⊠TSS ⊠Turb ⊠TDS □ ⊠COD □	(F)
Lims#: $\underline{ACOO329} - \underline{O2}$ Location: \underline{PCSTIC} Sample Date: 2-2-24 Sample ID: $\underline{240201} - \underline{2}$	Split Date: 2-2-24 Start Split: <u>125</u> Start Filter: <u>125</u> Comp Time: <u>1121</u> Analyst: <u>Amp/pkt</u>	Filter: ⊠Voss ⊠0.45 high- capaacity ⊠5.0µm ⊠10.0µm	Coll Jug: <u>CCCCC</u> 48-17 Comp Jug: <u>CCCCC</u> 48-77 SS Tubing/Helper: CC00047-85 (SSA4) Stir Bar: CC00048-85 Connector: CC00040-06 and CC00039-71	⊠Teflon Total ⊠TKN ⊠Teflon Diss (F) ⊠NH₃ ⊠Hg CVAA ⊠NOx (F) ⊠BOD ⊠ortho-P ⊠TSS ⊠Turb ⊠TDS ⊠COD	(F) (Composited into (i) of the 16L
Lims#: $AC00329-03$ Location: $ACST 1C$ Sample Date: 2-2-24 Sample ID: $240201 - 206 - \omega C$	Split Date: 2-2-24 Start Split: <u>1142</u> Start Filter: <u>1142</u> Comp Time: <u>1138</u> Analyst: <u>Amp/Pect</u>	Filter: \boxtimes Voss $\boxtimes 0.45 \mu m$ high- capacity ($\times 3$) $\boxtimes 5.0 \mu m$ ($\times 2$) $\boxtimes 10.0 \mu m$ ($\times 2$)	Coll Jug: <u>СССО Ч7-32</u> Comp Jug: <u>ССОО Ч7-32</u> SS Tubing/Helper: CC00048-70 (SSA5) Stir Bar: CC00048-85 Connector: CC00041-46 (x2)	⊠Teflon Total ⊠TKN ⊠Teflon Diss (F) ⊠NH3 ⊠Hg CVAA ⊠NOx (F ⊠BOD ⊠ortho-P ⊠TSS ⊠Turb ⊠TDS ⊠COD □	(F) (4) voss filters; but readed volume than to get needed volume than
Lims#: $\underline{A}_{COOB29-05}$ Location: \underline{A}_{CSTLC} Sample Date: 2-2-24 Sample ID: <u>240201-</u> 4	Split Date: 2-2-24 Start Split: <u>i</u> 2.2.6 Start Filter: <u>i</u> 2.2.6 Comp Time: <u>i</u> 2.1.5 Analyst: <u>Amo/Dr</u> T	Filter: ⊠Voss ⊠0.45µm high- capacity ⊠5.0µm ⊠10.0µm	Coll Jug: <u>(C600-4% 78(×2)</u> Comp Jug: <u>2378</u> SS Tubing/Helper: CC00047-42 (SSA6) Stir Bar: CC00050-10 Connector: CC00041-46 (x2)	⊠Teflon Total ⊠TKN ⊠Teflon Diss (F) ⊠NH3 ⊠Hg CVAA ⊠NOx (F ⊠BOD ⊠ortho-P ⊠TSS ⊠Turb ⊠TDS □ ⊠COD □) (F) (F) (F)
Lims#: $\underline{A_{C00329-06}}$ Location: $\underline{A_{CSTIC}}$ Sample Date: 2-2-24 Sample ID: $\underline{240201}^{-}$ 5 BPP	Split Date: 2-2-24 Start Split: <u>1135</u> Start Filter: <u>1135</u> Comp Time: <u>1215</u> Analyst: <u>Amady pict</u>	Filter: ⊠Voss ⊠0.45µm high- capacity ⊠5.0µm ⊠10.0µm	Coll Jug: <u>COO048-78 (x2</u> Comp Jug: <u>COO01378</u> SS Tubing/Helper: CC00047-18 (SSA7) Stir Bar: CC00034-BB Connector: CC00044-99 (x2)	Image: System) (F) Duplicate

ACHD SAMPLE FILTRATION, SPLITTING, AND COMPOSITING FOR METALS

PAGE 2 OF 2

Sample	Split/Filter Info	Filter Used	Bottle/Lid Lots	Bottles Split		Comments
Lims#: $Acco329-04$ Location: $ACSTIC$ Sample Date: 2-2-24 Sample ID: $Amoford 1$ 240201-03-WC	Split Date: 2-2-24 Start Split: <u>1252</u> Start Filter: <u>1252</u> Comp Time: <u>N/A</u> Analyst: <u>Ame/Ort</u>	Filter: ⊠Voss ⊠0.45µm high- capacity ⊠5.0µm ⊠10.0µm	Coll Jug: <u>craw48-77</u> Comp Jug: <u>N/A</u> SS Tubing/Helper: Ccaro 48-70 (SSA8) Stir Bar: CC00040-97 Connector: CC00044-99 (x2)	 ☑ Teflon Total ☑ Teflon Diss (F) ☑ Hg CVAA ☑ BOD ☑ TSS ☑ TDS ☑ COD 	⊠TKN ⊠NH₃ ⊠NO _x (F) ⊠ortho-P (F) ⊠Turb □	Only ljug.
Lims#: $Accordent arrow and a constraints and a constraints are a constraints and a constraints and a constraints are a constraints and a constraints are a constraints and a constraints are a$	Split Date: <u>2 - 2 - 24</u> Start Split: <u>1315</u> Start Filter: <u>1315</u> Comp Time: <u>1312</u> Analyst: <u>Armp/OKT</u>	Filter: ⊠Voss	Coll Jug: $ccoop + 8 - 78(x^2)$ Comp Jug: $ccoo + 8 - 78$ SS Tubing: 5517 SS Helper: $50 - 08$ Stir Bar: $ccoo3+ - 83$ Connector: $ccoo3+ - 83$	 ☑ Teflon Total ☑ Teflon Diss (F) ☑ Hg CVAA ☑ BOD ☑ TSS ☑ TDS ☑ COD 		2 nd jug had low volume. and was noticeably lighter in color.
Lims#: Location: Sample Date: Sample ID:	Split Date: Start Split: Start Filter: Comp Time: Analyst:	Filter: ⊠Voss ⊠0.45µm □1.0µm ⊠5.0µm □Other:	Coll Jug: Comp Jug: SS Tubing: SS Helper: Stir Bar: Connector:	 ☑ Teflon Total ☑ Teflon Diss (F) ☑ Hg CVAA ☑ BOD (F) ☑ TSS ☑ TDS 	⊠TKN ⊠NH₃ ⊠NO _x (F) ⊠ortho-P ⊠Turb	
Lims#: Location: Sample Date: Sample ID:	Split Date: Start Split: Start Filter: Comp Time: Analyst:	Filter: ⊠Voss ⊠0.45µm □1.0µm ⊠5.0µm □Other:	Coll Jug: Comp Jug: SS Tubing: SS Helper: Stir Bar: Connector:	 ☑ Teflon Total ☑ Teflon Diss (F) ☑ Hg CVAA ☑ BOD ☑ TSS ☑ TDS ☑ COD 	⊠TKN ⊠NH ₃ ⊠NO _x (F) ⊠ortho-P (F) ⊠Turb □	
Lims#: Location: Sample Date: Sample ID:	Split Date: Start Split: Start Filter: Comp Time: Analyst:	Filter: ⊠Voss ⊠0.45µm □1.0µm ⊠5.0µm □Other:	Coll Jug: Comp Jug: SS Tubing: SS Helper: Stir Bar: Connector:	 ☑ Teflon Total ☑ Teflon Diss (F) ☑ Hg CVAA ☑ BOD ☑ TSS ☑ TDS ☑ COD 	⊠TKN ⊠NH ₃ ⊠NO _x (F) ⊠ortho-P (F) ⊠Turb □	

Technical Memorandum

1290 W. Myrtle St. Suite 340 Boise, ID 83702

Phone: 801.316.9859

- Prepared for: Ada County Highway District
- Project Title: NPDES Phase I Stormwater Support WY 2024
- Project No.: 159103

Technical Memorandum

- Subject: ACHD Phase I Storm Event Report for February 26, 2024
- Date: May 24, 2024
- To: Monica Lowe
- Cc: Steven Turner Kristen Chisholm
- From: Zuly Lapa, Project Engineer
- Prepared by: Zuly Lapa, EIT, Project Engineer

Reviewed by: Melissa Jannusch, PE, Project Manager

Limitations:

This document was prepared solely for ACHD in accordance with professional standards at the time the services were performed and in accordance with the contract between ACHD and Brown and Caldwell dated October 10, 2023. This document is governed by the specific scope of work authorized by ACHD; it is not intended to be relied upon by any other party except for regulatory authorities contemplated by the scope of work. We have relied on information or instructions provided by ACHD and other parties and, unless otherwise expressly indicated, have made no independent investigation as to the validity, completeness, or accuracy of such information.

Section 1: Introduction

The Environmental Protection Agency Region 10 reissued a Municipal Separate Storm Sewer System Phase I National Pollutant Discharge Elimination System Permit (NPDES Permit), effective October 1, 2021, to Ada County Highway District (ACHD), Boise City, Ada County Drainage District No. 3, Idaho Transportation Department District 3, Boise State University, and Garden City. Under the NPDES Permit, Permittees are required to continue to conduct wet weather stormwater outfall monitoring and subwatershed monitoring. Four outfall monitoring sites (Lucky, Whitewater, Main, and Americana) and one subwatershed monitoring site (AS_6) have been established. The AS_6 site represents a subwatershed located within the Americana watershed. At each site, a minimum of three composite and three grab samples will be collected during Water Year (WY) 2024 (October 1, 2023, through September 30, 2024). The following storm event report summarizes stormwater sampling results from the February 26, 2024, storm event.

Section 2: Project Status

Table 2-1 is a summary of the sample types collected to date for WY 2024 Phase I Stormwater Outfall Monitoring. When samples are qualified, additional samples will be attempted from subsequent storms to collect unqualified samples.

Table 2-1. WY 2024 Samples Collected											
Date	Lucky	Whitewater	Main	Americana	AS_6						
October 10, 2023	G, C ^{1,2}	G		G, C ³							
November 19, 2023	G, C	G, C	G, C	G4, C	G, C						
February 1, 2024	G₅, C	G ⁵ , C ⁶	G₅, C	G₅, C	G⁵, C						
February 26, 2024	G, C	G, C	G, C ⁷	G, C	G, C						
Unqualified Samples:	3G, 3C	3G, 2C	2G, 2C	2G, 3C	2G, 3C						
Samples Remaining:	0G, 0C	0G, 1C	1G, 1C	1G, 0C	1G, 0C						

Notes:

-- = no samples taken

C = composite sample

G = grab sample

¹Composite samples qualified due to lack of representativeness (50% – 75%).

 $^{\rm 2}$ Incomplete water quality analysis due to low composite sample volume.

³ Composite samples qualified due to lack of representativeness (50% – 75%) of the calculated flow volume.

⁴ Incomplete field parameter collection on the grab sample data form due to field error.

⁵ E. coli sample qualified due to exceeded hold time.

⁶ Composite sample rejected due to automatic sampler triggering prior to storm event runoff. The subsamples taken prior to the event represented more than 10% of the composite volume.

⁷ Composite sample qualified due to automatic sampler triggering prior to storm event runoff. The subsamples taken prior to the event represented less than 10% of the composite volume.

Section 3: Storm Event Summary

The February 26, 2024, storm event and the subsequent preparation and sampling efforts are detailed in the following sections.

3.1 Storm Detail

A summary of the forecast on which monitoring decisions were based is detailed below. The sampling event communication form that describes the forecast and summarizes the decision-making process from February 26, 2024, is included in Attachment A for reference.

Saturday, February 24, 2024 (Sampling Event Communication)

• On the afternoon of February 24, the National Weather Service issued a forecast for widespread rain in the Boise area, starting February 26 at 0400 and ending at 1500, with the heaviest precipitation from 1000 to 1300. The chance of precipitation was 90%, with 0.30 inches of precipitation forecasted.

Sunday, February 25, 2024 (Set Up)

• Setup was accomplished in the morning of February 25. An expected precipitation depth of 0.11 inches was used to set trigger volumes at monitoring stations. A runoff calculations worksheet showing how the trigger volumes were calculated is included in Attachment A.

Monday, February 26, 2024 (Storm Event)

- Moderate rain first started at approximately February 26 at 0821 and ended at 1241. A stronger second wave of rain started soon after around 1230 and ended at 2032.
- Precipitation totals ranged between 0.13 and 0.21 inches at local rain gauges.

Flow measurements and precipitation data are listed in Table 1 along with a sampling summary. Hydrographs for the Lucky, Whitewater, Main, Americana and AS_6 site showing flow, rain, and sample collection data are included in Attachment B.

3.2 Sampling Summary

Lucky, Whitewater, Main, Americana and AS_6 monitoring stations were set up on February 25, to collect flow-proportional composite samples during the storm. Sampler enable conditions were programmed into the Whitewater and Americana flowmeters. A site-specific velocity cutoff value was programmed into Lucky, Main, and AS_6 flowmeter. Setup and sampling information are included in Table 1. The field forms completed during setup/shutdown and sampling are included in Attachment C.

Grab Samples

Two, two-member teams mobilized to collect stormwater runoff grab samples and verify operation of the automatic sampling equipment on February 26 around 0910. Grab samples for Lucky, Whitewater, Main, Americana, and AS_6 were submitted to the West Boise Water Quality Lab (WQL) at 1201 on February 26.

Results for grab samples, including field parameter and analytical data, are included in Table 2. Laboratory analytical reports are included in Attachment D.

Composite Samples

Composite samples were collected at the Lucky, Whitewater, Main, and Americana monitoring station and submitted to the WQL at 2057 on February 26. The composite sample at AS_6 monitoring station was submitted at 2058 on February 26 to the WQL.

Analytical results are shown in Table 2 and pollutant loading estimates for the event are detailed in Table 3. Laboratory analytical reports are included in Attachment D.

Section 4: Quality Assurance/Quality Control

A summary of quality control samples collected during the February 26, 2024, storm event is presented below in Table 4-1. A field blank and a field duplicate were collected from the Main monitoring station. The analytical results for these samples are included in Table 4.

Table 4-1. Quality Control Samples							
Sample ID	Sample Type	Parent Sample	Conclusions				
240226-12-001	Field blank	Main grab	No E. coli detection was reported in the field blank.				
240226-12-101	Field duplicate	Main grab	Relative percent difference was within the acceptable range.				

Data quality objectives for this storm were evaluated and tracked using the data validation review checklist included in Attachment A.

An acceptable composite sample represents at least 75 percent of the total discharge or at least 6 hours of the storm duration. All composite samples, except for Main, met the criteria.

Prior to the start of the storm precipitation or runoff, three subsamples were successfully collected by the automatic sampler at the Main monitoring site. These subsamples are considered non-stormwater, as there was no evidence of flow or precipitation during the evening of February 25th through the morning of February 26th. Following the SWOMP guidelines, calculations were conducted to determine if the non-stormwater composite subsamples volume accounted for 10% of the total composite sample volume. The non-stormwater composite subsamples accounted for 8% of the total composite sample volume (see Table 4-2), qualifying the Main composite sample.

Table 4-2. Non-Stormwater Subsample Evaluation							
Composite Sample Volume (ft ³)	Non-Stormwater Subsample Volume (ft ³)	Non-stormwater Subsample Ratio					
11,165	913	8 %					

Section 5: Notes and Recommendations

Main

The Main site collected non-stormwater samples at three instances prior to the sampling event. The samples had levels greater than the enabling condition of 1.87-inches. The sampler was programmed correctly at the time of set-up. Additional investigation is required to determine the cause of collecting samples when there was no evidence of flow or precipitation. ACHD will reach out to HACH for support.

Americana

Two "Skipped" sample messages were recorded during the composite sample collection at Americana. These sample messages appear when the sampling team pause the sampler program, stopping it from collecting the next subsample. The "Skipped' sample messages do not affect the sampling data nor is shown on the hydrograph.

Brown AND Caldwell

Data Tables

TAB-1 ACHD_240226 SER PI SER_159103_FINAL

Table 1. Sampling and Flow Summary							
	Lucky	Whitewater	Main	Americana	AS_6		
Grab samples collected and submitted?	YES	YES	YES	YES	YES		
Composite samples collected and submitted?	YES	YES	YES	YES	YES		
Trigger volume (gal or ft ³)	2895 gal	800 ft ³	3411 gal	2960 ft ³	137 ft ³		
Velocity cutoff (fps)					0.02		
Sampler enable condition (in)	Level > 2.72"	Level > 3.05 "	Level > 1.87"	Level > 7.59 "			
Runoff start time	0839	0848	0834	0821	0915		
Grab sample collection time	1017	0928	0919	0948	1012		
Composite sample stop time	1534	1908	1601	1606	1620		
Runoff stop time	1752	2032	1733	1752	1759		
Volume of Discharge Sampled (ft ³)	3,573	30,558	11,165 ¹	115,368	4,873		
Volume of non-stormwater subsamples (ft ³)			913				
Total runoff volume (ft ³)	3,965	35,198	10,885	140,004	5,447		
Percent of storm flow sampled (%)	90%	87%	103% ¹	83%	89%		
Percent of non-stormwater volume to total discharge sampled volume (%)			8%				
Composite sample duration (hrs)	6.5	9.5	17 ¹	7	6		
Storm Precipitation (in)	0.13	0.21	0.18	0.18/0.18	0.18/0.18		
Referenced Rain Gauge	Cynthia Mann	Whitewater	Front	Front/East	Front/East		
Sampler messages (counts): Success	10	40	26	35	24		
Number of composite bottles filled	1	2	2	2	2		
Composite sample volume (Approx.; ml)	5,000 ml	23,500 ml	14,050 ml	20,500 ml	13,000 ml		

Notes:

- = No data.

 $^{1}\,\mbox{Non stormwater samples were collected prior to the start of the storm precipitation or runoff$

	Table 2. Field and Analytical Data Summary																										
				Field	Parameters											Anal	rtical Paramet	ers									
Monitoring	Comple Date	Comple ID Creh	Dissolved		Conductivit	Tomo evelue	E coli					Turkidiku				Orthophosphate		Nitrate +		Amonio Antol	Cadmium,		Copper,				
Station	Sample Date	Sample iD Grab	Oxygen		Conductivit	y remperature		Composito	BODS		CaCO ₃	Turbially			Phosphorus			Nitrite as N		Arsenic, total	dissolved			dissolved			dissolved
			mg/L	S.U.	uS/cm	С	mpn/ 100 mL	Composite	mg/L	mg/L	mg/L	NTU	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Lucky	2/26/2024	240226-03-WG	9.89	8.27	125.9	4.75	37.9	240226-03-WC	13.5	60.0	53.2	18.9	18.1	114	0.262	0.124	0.476	0.969	1.71	2.6	4.5	0.031	4.5	0.028	0.72	0.0150	13.5
Whitewater	2/26/2024	240226-11-WG	10.88	7.74	749.2	5.97	38.3	240226-11-WC	12.6	84.0	77.8	52.3	47.3	182	0.347	0.174	0.596	0.921	2.43	2.6	0.014	0.062	4.4	0.093	3.8	0.0151	24.5
Main	2/26/2024	240226-12-WG	9.79	7.94	165.88	9.53	24.3	240226-12-WC	13.9 ⁵⁰	119 ^{5J}	29.8 ^{5J}	94.7 ^{5J}	104 ^{5J}	85.2 ^{5J}	0.231 ^{6J}	0.0631 ^{5J}	0.829 51	0.424 5	1.96 51	1.5 5	0.032 5/	0.13 5	5.6 5	0.12 ^{5J}	6.1 ^{5J}	0.0191 5/	51.7 ^{5J}
Americana	2/26/2024	240226-14-WG	10.54	7.53	470.55	8.74	125.9	240226-14-WC	12.6	85.0	102	51.1	54.3	214	0.276	0.106	0.496	0.940	1.47	3.3	0.021	0.097	4.0	0.063	3.9	0.0148	24.3
AS_6	2/26/2024	240226-206-WG	9.39	7.44	124.28	6.49	53.7	240226-206-WC	17.7	122	22.2	75.5	75.8	85.8	0.570	0.289	0.522	0.278	2.43	2.2	0.016	0.087	5.0	0.26	6.3	0.0183	20.2

Notes: - = No data. ⁶⁷Composite sample qualified due to non stormwater sample volume comprising less than 10% of the total composite sample volume

Table 3. Event Pollutant Loading Estimates in Pounds								
Monitoring Station	Event Date	TSS	Total Phosphorus	Ammonia as N	Nitrate + Nitrite as N	TKN		
Lucky	2/26/2024	4.48	0.0648	0.118	0.240	0.423		
Whitewater	2/26/2024	104	0.762	1.31	2.02	5.34		
Main	2/26/2024	70.6 ^{5J}	0.157 ^{5J}	0.563 ^{5J}	0.288 ^{5J}	1.33 ^{5J}		
Americana	2/26/2024	474	2.41	4.33	8.21	12.8		
AS_6	2/26/2024	25.8	0.194	0.177	0.0945	0.826		

Notes:

^{5J} Composite sample qualified due to non stormwater sample volume comprising less than 10% of the total composite sample volume

Table 4. QC Sample Summary								
Date	Parent Sample	Sample ID	Туре	E. coli				
				mpn/ 100 mL				
2/26/2024	240226-12-WG	240226-12-001	Field Blank	<1.0				
2/26/2024	240226-12-WG	240226-12-101	Field Duplicate	26.9				
	2%							
	40%							

Attachment A: Supplemental Documents

Sampling Event Communication Form Data Validation Checklist Runoff Calculation Worksheet

SAMPLING EVENT COMMUNICATION FORM

Date: 02/24/2024	Time: 8:24 AM	Initials:	ST
Is there a targeted sampling event du		Yes	
(Or, if it is Friday, is a targeted event e			

Past 72 hr Precip	
Date and time of expected event	Monday, 2/26/24 @4:00 AM
Expected amount of precipitation	0.30"
Percent chance of precipitation	90%
Percent chance of >0.10" over 12 hours	75%

NWS Update

Spoke with Les from NWS and he thinks Boise will still get 0.3'' of rain starting at 4:00 AM – 3:00 PM on Monday. It will be a heaviest around 10:00 AM – 1:00 PM.

Targeted Station & Samples								
Lucky	Whitewater	Main	Americana	AS_6	State (Phase II)			
🖾 Grab	🖾 Grab	🖾 Grab	🖾 Grab	🖾 Grab	🖾 Grab			
🛛 Composite	🛛 Composite	🛛 Composite	🛛 Composite	🛛 Composite	🛛 Composite			

Type of Forecasted Precipitation		
🗆 Light Rain	🛛 Rain	🗆 Rain on Snow
\Box Scattered Showers	Thunder Showers	Snowmelt
□ Other:		

Reasons for Not Targeting a Forecasted Storm and/or Stations

□ Holiday

□ Waiting on Antecedent Dry Period – Expires:

Equipment Concerns:

 \Box Other:

Text Forecast

NWS Forecast for: 2 Miles NNW Garden City ID Issued by: National Weather Service Boise, ID Last Update: 4:08 am MST Feb 24, 2024

Today: Sunny, with a high near 60. South southeast wind 5 to 7 mph.

Tonight: Clear, with a low around 35. Southeast wind around 6 mph.

Sunday: Sunny, with a high near 62. Southeast wind 6 to 10 mph.

Sunday Night: A 20 percent chance of rain after 11pm. Increasing clouds, with a low around 41. South wind 6 to 10 mph.

Monday: Rain. High near 48. Breezy, with a south southwest wind 11 to 16 mph becoming west 18 to 23 mph in the morning. Winds could gust as high as 36 mph. Chance of precipitation is 90%. New precipitation amounts between a tenth and quarter of an inch possible.

Monday Night: A 20 percent chance of snow before 11pm. Mostly cloudy, with a low around 27. Blustery. Tuesday: Partly sunny, with a high near 43.

Tuesday Night: A 20 percent chance of snow after 11pm. Mostly cloudy, with a low around 30.

Wednesday: A slight chance of rain and snow before 11am, then a chance of rain. Mostly cloudy, with a high near 50. Chance of precipitation is 30%.

Wednesday Night: A 30 percent chance of rain. Mostly cloudy, with a low around 40.

Thursday: A 40 percent chance of rain. Mostly cloudy, with a high near 57. Thursday Night: Rain likely. Mostly cloudy, with a low around 38. Chance of precipitation is 60%. Friday: Rain likely. Mostly cloudy, with a high near 54. Chance of precipitation is 70%.

Forecast Discussion

Area Forecast Discussion National Weather Service Boise ID 354 AM MST <u>Sat</u> Feb 24 2024

.SHORT TERM...Today through Monday night...Sunny, mild and dry conditions today will give way to increasing clouds on Sunday. Most areas will see high temperatures around 10 degrees above normal both days, but below records. Snow covered mountain valleys won`t quite achieve the anomalous warmth, but will still warm above **normal**. Light precipitation will develop over the w-central Idaho mountains Sunday afternoon as a storm drops out of Canada. Given the mild air mass snow levels will start between 5-6kft, meaning rain in mountain valleys. The precipitation expands across the higher terrain in e-central Oregon and Boise mountains Sunday night. By sunrise Monday morning snow levels will range between 4500-5500 feet bringing a change from rain to snow in mountain valleys. It's during the day Monday that we`ll see the heaviest snowfall rates in the mountains and rain fill in across the valleys as the upper trough and accompanying cold front drop through the region. At elevations above 5500-6000 feet, where its all snow, accumulations of 6-12 inches are possible with locally higher amounts. Have less confidence on accumulation in mountain valleys as snow will have to overcome recent mild temperatures and daytime insolation along with temperatures above freezing. For now will keep the WS Watch headline.

Strong <u>flow</u> aloft, 25-40 mph at ~5kft <u>MSL</u> and 45-60 mph at ~10kft <u>MSL</u>, and a tightening surface pressure <u>gradient</u> will translate to gusty winds across the region. Elevated and open terrain will see the strongest winds as <u>flow</u> aloft mixes to the surface. This includes Harney and Malheur counties in Oregon and areas outside of the lower Snake Plain in SW Idaho. A high Wind <u>Watch</u> remains in place across southern and western zones as forecast speeds are solid Advisory and possible <u>Warning</u> magnitude. This is especially the case for areas closer to the NV border. The lower Snake Plain will see winds ramp up with the frontal passage Monday afternoon and Advisory winds are still in play.

Precipitation will shut off quickly behind the <u>front</u> Monday afternoon/evening as snow levels drop to valley floors. Sites below 4000 feet will <u>likely</u> see precipitation end as rain. In the Snake Plain the best chance to see a change to snow will be east of Mountain Home, and more so in the western Magic Valley where minor accumulations are forecast. Snow showers will continue in the mountains Monday night with light additional accumulation.

.LONG TERM...Tuesday through Saturday...As quickly as the <u>trough</u> entered the region, it`s on the way out on Tuesday. Lower elevations dry out while <u>instability</u> supports continuation of showers across the mountains. Any accumulation will be light. By Wednesday, westerly <u>flow</u> off the Pacific will begin to moderate the <u>air mass</u>, raising snow levels to 4500-5500 feet. Mountains will continue to see precipitation through the end of the week as a <u>deepening trough</u> along the <u>Pac</u> NW coast maintains a steady and moist <u>flow</u> aloft. Lower elevations will see precipitation chances increase again toward the end of the week as the <u>trough</u> shifts inland. After Thursday, snow levels will gradually lower in response to the advancing <u>trough</u>.

Storm Event QA/QC Checklist – Phase I

STORM DATE Z/26/24				1.4					100
A. Event and Data Completeness	Yes	No	N/A	Notes			1.11		
1. Field data sheets filled out completely and clearly	X								
2. Field parameters reviewed, and any problems/issues addressed	X								
3. All samples collected as specified	X								
4. All samples delivered to lab promptly (review chain of custody rpts)	X			Sec 2	strutte a	inalytical reports for	noted so	imple Cor	Mainer
5. Inconsistencies/clarifications discussed with sampling team member			X		0	•			temps
6. All analytical reports from lab received	X			Reiss	ved .	to report ammonia	in ma	1L	
B. Validation and Verification Methods	Yes	No	N/A	Notes	C. Control		0		
1. Outliers and unexpected values discussed with lab			×						
2. Appropriate analytical methods used	X			Verifi	ed C	orrect Ammonia Me	thod t	- Units	
3. All lab QA samples were within method acceptance criteria	X								
4. All samples reviewed and data qualifiers assigned if needed	X								
5. Data quality objective achieved	X								
C. Specific Storm and Sample QA/QC Criteria	Lucky	Whitewater	Main	Americana	AS_6	Program Criteria	Met	Qualify	Reject
1. Antecedent dry period (inches in previous 72-hours)	0.00	0.00	0.00	0,00	0.00	< 0.11" in 72 hrs	X		
2. Precipitation (inches)	0.13	0.21	0.18	0.18/0.19	0.18/	> 0.10"	X		
3. Sampled amount (% of total run-off)	90%	87%.	95%	83%	89%	>= 75% or >= 6 hrs: no qualifier			
4. Composite sample duration (hours)	6.5	9.5	17.0	7.0	6.D	<pre>>= 50% and <!--5%: qualify < 50%: reject</pre--></pre>	X		
4. Ecoli sample holding time (hours)	3.0	4.0	4.0	3.5	3.0	<=8 hrs: no qualifier >8 and <=16 hrs.: qualify >16 hrs.: reject	X		
5. Filtering of samples for dissolved parameter analysis (hours)	16.0	12.5	16.5	16.0	16.D	<= 24 hrs: no qualifier > 24 hrs.: reject	×		
D. Notes			12.75					1 m 10	

Reviewed by Henry Turner

Date 4/11/24

Monica Love _Date______ Approved by

C-240 Updated 220718 TL

Storm Runoff Estimates and Trigger Volumes

- Step 1. Enter runoff coefficients in yellow cells.
- Step 2. Enter expected precipitation depth (in) in blue cell.
- Step 3. Read trigger volumes (**bold**) in green cells.

Expected Precipitation Depth =	0.11
Aliquots per Sample =	17

		Using RC cal	C calculated from flow data			
Site	Area		Expected	Trigger		
	(ac)	RC	Vol (ft ³)	Vol (ft ³)		
Lucky	105	0.157	6582.5	387		
Whitewater	498	0.069	13621.3	801		
Main	79	0.246	7760.0	456		
Main Alt	60	0.200	4791.6	282		
Americana	875	0.144	50311.8	2960		
AS_6	204	0.046	3747.0	220		
State	34	0.160	2172.2	128		

Notes:

Calculated RC = Average (precip (ft) / [volume (ft^3) x area (ft^2)])

Where precip (ft) is the measured amount from local rain guage, and volume (ft³) is the measured discharge, and area (ft²) is the watershed area

Expected volume (ft^3) = RC x expected precip (ft) x area (ft^2)

Attachment B: Storm Event Hydrographs

Whitewater Hydrograph

C-244

Main Hydrograph

Attachment C: Field Forms

STATION: Personnel:	Lucley ST. PI	B	Date/Ti	me On-Site: _	2/26/24	7157		
Flow Meter Current Status								
Time	Level (in)	Flow (cfs)	Velocity (fps)	Battery (V)	Flow Start (date/time)	Rainfall (in)		
10:02	3.72	89.21	0.55	129				

Grab Information							
	Sample ID	Date	Time	Labeled?			
Site E.Coli	24026-02-WG	2126124	10:17				
Field Duplicate E.Coli	-101						
Field Blank E.Coli	-001						

*Note: time on bottle for QC samples is 1200

Field Parameters							
Meter number	Time	Temp (C)	D.O. (mg/L)	рН (S.U.)	SpCond (uS/cm)		
MP07	10.12	4.75	9, 29	8,27	125.9		

	Sampler Current Status						
First Subsample Date/Time	212-6124	9:05					
Last Subsample Date/Time	212612-1	0:04					
# of Subsamples taken	3						

Comments:

Flow reading in GPM installed CPS.

Revised 210924 TL

STATION: _	White	water_	1055	· · · · ·				
Personnel: _	ST, P	0	Date/Ti	me On-Site:	a : Ø 2	26/24		
Flow Meter Current Status								
Time	Level (in)	Flow (cfs)	Velocity (fps)	Battery (V)	Flow Start (date/time)	Rainfall (in)		
9:15	251	Q.16	0.50	1				

Grab Information							
	Sample ID	Date	Time	Labeled?			
Site E.Coli	240226-11 -WG	2/26/24	9:28				
Field Duplicate E.Coli	240226-11-101	2/26/24	937.2.0	° D'			
Field Blank <i>E.Coli</i>	240226-1 -001	2/26/24	1:35:12:	50 🗆			

*Note: time on bottle for QC samples is 1200

Field Parameters						
Meter number	Time	Temp (C)	D.O. (mg/L)	рН (S.U.)	SpCond (uS/cm)	
MP07	9:42	5.97	10,88	7.74	749.2	

	Sampler Current Status					
	First Subsample Date/Time	9:23				
7	Last Subsample Date/Time	9:40				
	# of Subsamples taken	1 2				

Comments:

Successful. ST Whitewater - Alternate QC site, Main grab QC was Successful, So whitewater's QC discarded and not Successful, So whitewater's QC discarded and not submitted to the lab. ST

Revised 210924 TL

STATION: MAIN Date/Time On-Site: 9:12 Am 2/26/24 Personnel: KC, LS, MV **Flow Meter Current Status** Velocity Battery Flow Start Rainfall Flow Т Time Loval н

Inne	Level	FIOW	velocity	Dattery	FIOW Start	Naiman
	(in)	(cfs)	(fps)	(V)	(date/time)	(in)
9:12	5.10	311.35	1.75	12.9		-

Grab Information								
	Sample ID		Date	Time	Labeled?			
Site E.Coli	240226-12	-WG	240776	0919	Ţ Ş Û			
Field Duplicate E.Coli	240226-12	-101	140226	0922	P			
Field Blank <i>E.Coli</i>	240226-12	-001	240226	0925	Ŗ			

*Note: time on bottle for QC samples is 1200

Field Parameters							
Meter number	Time	Temp (C)	D.O. (mg/L)	pH (S.U.)	SpCond (uS/cm)		
MP11	9:31	9.53	9.79	7.94	115.88		

e	Sampler Current Status					
First Subsample Date/Time	22:28	2/25				
Last Subsample Date/Time	9:09	2/26				
# of Subsamples taken	6					

Comments:

STATION:	AMERI	entrys				2
Personnel: 🕌	Le LS,	MJ	Date/Tii	me On-Site:	9:42 2/2	26/24
		Flow	w Meter Curre	ent Status		
Time	Level (in)	Flow (cfs)	Velocity (fps)	Battery (V)	Flow Start (date/time)	Rainfall (in)
9:42	9.19	5.24	3.130	12.09		-

	Gra	ab Info	rmation		
	Sample ID		Date	Time	Labeled?
Site E.Coli	24022614	-WG	24 22:0	0948	
Field Duplicate E.Coli		-101	0		
Field Blank <i>E.Coli</i>		-001			

*Note: time on bottle for QC samples is 1200

Field Parameters						
Meter number	Time	Temp (C)	D.O. (mg/L)	рН (S.U.)	SpCond (uS/cm)	
MPII	0951	3.74	10.54	7.53	470.99	

	Sampler Current Status				
First Subsample Date/Time	8:57 ON 2/26				
Last Subsample Date/Time	9:35 - 2/26				
# of Subsamples taken	5				

,

Comments:

Revised 210924 TL

STATION:	A-5=0				~ 1
Personnel:	Le LS	MV	Date/Time On-Site:	0:05	2/26/24
			Flow Meter Current Status		

now meter current status							
Time	Level (in)	Flow (cfs)	Velocity (fps)	Battery (V)	Flow Start (date/time)	Rainfall (in)	
10:05	2.962	0.15	0.71	12.2			

	Grab Info	ormation		2
	Sample ID	Date	Time	Labeled?
Site E.Coli	240226-206 -WG	228 2/26/24	1012	, SI
Field Duplicate E.Coli	-101			
Field Blank <i>E.Coli</i>	-001			

*Note: time on bottle for QC samples is 1200

Field Parameters						
Meter number	Time	Temp (C)	D.O. (mg/L)	рН (S.U.)	SpCond (uS/cm)	
MPII	1015	10,49	\$ 9.39	7.44	124.28	

Sampler Current Status					
First Subsample Date/Time	10:04 - 2 26/24				
Last Subsample Date/Time	10:04 - 2/2/0/24				
# of Subsamples taken	1				

Comments:

Revised 210924 TL

Set Up/ Shut Down Form – HACH (Lucky, Main, AS_6)

TATION: Lucky						
SET UP						
Personnel: KC, ST	Ti	me Le	evel (in)	Flow (cfs)	Velocity (fps)	Battery (V)
	101	22 1	72	0.00	0.00	12.9
Date/Time 2/25/24 10:	15					
		Enable Co	ndition or \	/elocity Cutoff	2.11-	
offsite at 10.90				Deadband	1.00	
			т	rigger Volume	: 2895	
 Set logging interval to 1 minute Start flowmeter program and sampler program and	ogram	-				2
SHUT DOWN						
Personnel. 57	Time	Level (in)	Flow (cf	s) Velocity	(fps) Total (c	f) Battery (V)
	12:57	1.72	1.72	0.0	2	12.6
Date/Time 2/27/24/253	Dor	wnloaded to:	57 4	lesholive		
		67				
If flow monitoring is complete: 菜 Halt program on flowmeter 菜 Download flowmeter data 致 Remove flowmeter battery	-		Continuing to □ Replace □ Reset log □ Change v □ Start pro □ Verify ru	monitor flow: flowmeter batt gging interval to velocity cutoff t gram nning	ery o 15 minutes o 0.02 fps	

Comments:

	ă	Composite Sample Collection	
STATION:	LUCKY	Bottle of	
Personnel:	STIPH	Date/Time On-Site: 050 ZIDIA	

🖳 Halt sampler program			
Dut lid on sample bottle; label sample bottle			
Sample ID:	240226 - 03	-WC	
Approx Sample Volume (mL):	500 ml		
Clarity (ex. Clear, Cloudy, Silty):	Clear		
Color (ex. Clear, Gray, Tan, Brown, Black):	Tan .		
QA/QC Sample ID:		-103	(Time: 1200)

	Subsample Information									
Trigger #	Date/Time	Error Message/ Subsample Result	Trigger #	Date/Time	Error Message/ Subsample Result					
1	2/26 9:05	Succest	13							
2	220 938		14							
3	4250 10:04		15							
4	1 107		16							
5	1237		17							
6	Jun		18							
7	1425		19							
8	1439		20							
9	1458		21							
10	1 1934	1	22							
11			23		8					
12		1	24							

Comments:

If sampling is complete:

- Add ice to sample transport cooler

If continuing sampling (sample bottle change-out):

- □ Keep flowmeter running
- □ Install new 15L bottle, add ice
- □ Restart program from beginning

Date/Time Restarted: _____

□ Verify running

	Liquid Height vs. Approximate Sample Volume Conversion Chart										
Liquid	Sample	Liquid	Sample	Liquid	Sample	Liquid	Sample	Liquid	Sample		
Height	Volume	Height	Volume	Height	Volume	Height	Volume	Height	Volume		
0.5"	400 mL	3.0"	3500 mL	5.5"	7250 mL	8.0"	11000 mL	10.5"	14750 mL		
1.0"	800 mL	3.5"	4250 mL	6.0"	8000 mL	8.5"	11750 mL	11.0"	15500 mL		
1.5"	1400 mL	(4.0"	5000 mL)	6.5"	8750 mL	9.0"	12500 mL	11.5"	16250 mL		
2.0"	2000 mL	4.5	5750 mL	7.0"	9500 mL	9.5"	13250 mL	After 12"	1" = 1500 mL		
2.5"	2750 mL	5.0"	6500 mL	7.5"	10250 mL	10.0"	14000 mL	Lab min	8.000 ml		

Set Up/ Shut Down Form – ISCO (Whitewater, Americana, State)

ST ICC	Time	Level (in)	Flow (cfs)	Velocity (fps)	Battery (V)
Personnel:	10:55	1.86	0.04	0.17	
Date/Time					
Sh-site:	En	able Condition:	3.05		
		Hysteresis:	1=00		
	Flow	v Pulse Interval:	SOUCE		
<u>n-Site</u>		Flowlink (Refer t	o PG 411 or PG	412, if needed)	, ,
Replace flowmeter battery, install sam	pler battery	Direct or	Remote; Date/	time <u>Did not</u>	download
🗸 Perform decon. cycle		🖾 Retrieve	data and reviev	v recent flow hist	ory
VI Install 151 sample bottle with ice		KI Change V	Vireless Power	Control to Storm	Event
Install 15L sample bottle, with ice Leave bottle lid at site, in a clean re-sea	alable plastic bag	K Change V	Vireless Power Data Storage Ra	Control to Storm tes to 1 minute fo	Event or Level,
 Install 15L sample bottle, with ice Leave bottle lid at site, in a clean re-sea Set sampler program parameters 	alable plastic bag	K Change V X Change I Velocity, Tot	Vireless Power Data Storage Ra tal Flow, and Flo	Control to Storm tes to 1 minute fo ow Rate	Event or Level,
 Install 15L sample bottle, with ice Leave bottle lid at site, in a clean re-sea Set sampler program parameters Check date/time on sampler Verify all cable and tubing connections 	alable plastic bag	Change V Change I Velocity, Tot Enable Sa equation	Vireless Power Data Storage Ra tal Flow, and Fl ampler: On Trig	Control to Storm tes to 1 minute fo ow Rate ger, and set Samp	Event or Level, oler Enable
 Install 15L sample bottle, with ice Leave bottle lid at site, in a clean re-sea Set sampler program parameters Check date/time on sampler Verify all cable and tubing connections Verify sampler program is running 	alable plastic bag	Change V Velocity, Tot A Enable Sa equation	Vireless Power Data Storage Ra tal Flow, and Flo ampler: On Trig oler Pacing to Fl	Control to Storm tes to 1 minute fo ow Rate ger, and set Samp ow Paced, and set	Event or Level, oler Enable t trigger
 Install 15L sample bottle, with ice Leave bottle lid at site, in a clean re-sea Set sampler program parameters Check date/time on sampler Verify all cable and tubing connections Verify sampler program is running 	alable plastic bag	Change V Velocity, Tot Enable Sa equation SA Set Samp volume	Vireless Power Data Storage Ra tal Flow, and Fl ampler: On Trig ler Pacing to Fl	Control to Storm tes to 1 minute fo ow Rate ger, and set Samp ow Paced, and set	Event or Level, oler Enable t trigger
Install 15L sample bottle, with ice Leave bottle lid at site, in a clean re-sea Set sampler program parameters Check date/time on sampler Verify all cable and tubing connections Verify sampler program is running mments: Flow, weter firm was	alable plastic bag	Change V A Change I Velocity, Tot Enable Sa equation Set Samp volume	Vireless Power Data Storage Ra tal Flow, and Fl ampler: On Trig oler Pacing to Fl Correcte	Control to Storm tes to 1 minute fo ow Rate ger, and set Samp ow Paced, and set	Event or Level, oler Enable t trigger of down
Install 15L sample bottle, with ice Leave bottle lid at site, in a clean re-sea Set sampler program parameters Check date/time on sampler Verify all cable and tubing connections Verify sampler program is running mments: Flowmeter firm was data. Reviewed data on	alable plastic bag 7 minutus FlonmeTer	Change V A Change I Velocity, Tot Enable Sa equation A Set Samp volume	Vireless Power Data Storage Ra tal Flow, and Fle ampler: On Trig oler Pacing to Fle Corvecte	Control to Storm tes to 1 minute fo ow Rate ger, and set Samp ow Paced, and set	Event or Level, oler Enable t trigger of down
Install 15L sample bottle, with ice Leave bottle lid at site, in a clean re-sea Set sampler program parameters Check date/time on sampler Verify all cable and tubing connections Verify sampler program is running mments: Flow, weter firm was data. Reviewed data m	alable plastic bag 7 minutus <i>Flonm</i> eTer	Ki Change V Al Change I Velocity, Tot A Enable Sa equation A Set Samp volume off. Tim Secteen	Vireless Power Data Storage Ra tal Flow, and Fl ampler: On Trig oler Pacing to Fl Corvecte	Control to Storm tes to 1 minute fo ow Rate ger, and set Samp ow Paced, and set	Event or Level, oler Enable t trigger of <i>down</i>
Install 15L sample bottle, with ice Leave bottle lid at site, in a clean re-sea Set sampler program parameters Check date/time on sampler Verify all cable and tubing connections Verify sampler program is running mments: Flow, weter fine was data. Reviewed data m	alable plastic bag 7 minutus Flormeter	Velocity, Tot Velocity, Tot Enable Sa equation Set Samp volume	Vireless Power Data Storage Ra tal Flow, and Fl ampler: On Trig oler Pacing to Fl Corvecte	Control to Storm tes to 1 minute fo ow Rate ger, and set Samp ow Paced, and set	Event or Level, oler Enable t trigger of down
Install 15L sample bottle, with ice Leave bottle lid at site, in a clean re-sea Set sampler program parameters Check date/time on sampler Verify all cable and tubing connections Verify sampler program is running comments: Flow, were fine was data Reviewed data on	alable plastic bag 7 minutus Flormeter	Ki Change V Al Change I Velocity, Tot A Enable Sa equation A Set Samp volume	Vireless Power Data Storage Ra tal Flow, and Flo ampler: On Trig oler Pacing to Fl Corvecte	Control to Storm tes to 1 minute fo ow Rate ger, and set Samp ow Paced, and set	Event or Level, oler Enable t trigger of down
Install 15L sample bottle, with ice Leave bottle lid at site, in a clean re-sea Set sampler program parameters Check date/time on sampler Verify all cable and tubing connections Verify sampler program is running mments: Flow, welve firme was data. Reviewed data on HUT DOWN	alable plastic bag 7 minutus Flonmeter Time	Level (in)	Vireless Power Data Storage Ra tal Flow, and Fl ampler: On Trig oler Pacing to Fl Corvecte Flow (cfs)	Control to Storm tes to 1 minute fo ow Rate ger, and set Samp ow Paced, and set a Did n Velocity (fps)	Event or Level, oler Enable t trigger of down
Install 15L sample bottle, with ice Leave bottle lid at site, in a clean re-sea Set sampler program parameters Check date/time on sampler Verify all cable and tubing connections Verify sampler program is running mments: Flow, weter firm was data. Reviewed data on UT DOWN	alable plastic bag 7 minutus <i>FlonmeTer</i> Time	Ki Change V Al Change I Velocity, Tot A Enable Sa equation A Set Samp volume off. Tim Sected Level (in) 2.39	Vireless Power Data Storage Ra tal Flow, and Fl ampler: On Trig oler Pacing to Fl Corvecte Flow (cfs)	Control to Storm tes to 1 minute fo ow Rate ger, and set Samp ow Paced, and set al- Did M Velocity (fps) 0.41	Event or Level, oler Enable t trigger of down Battery (V)
Install 15L sample bottle, with ice Leave bottle lid at site, in a clean re-sea Set sampler program parameters Check date/time on sampler Verify all cable and tubing connections Verify sampler program is running mments: Flow, weter fine was data. Reviewed data on IUT DOWN 'ersonnel:	Time	Level (in) Level (in) 2. 39 2. 39	Vireless Power Data Storage Ra tal Flow, and Fle ampler: On Trig oler Pacing to Fle Corvecte Flow (cfs)	Control to Storm tes to 1 minute for ow Rate ger, and set Samp ow Paced, and set al- Did M Velocity (fps) 0.41	Event or Level, oler Enable t trigger of down Battery (V)

Comments:

Change Data Storage Rates to 15 minutes for Level,

Velocity, Total Flow, and Flow Rate

Enable Sampler: Never

STATION: Nater

Personnel: KC

Composite Sample Collection

Bottle _____ Date/Time On-Site: 2/210/24 _____

of

Halt sampler program			
Put lid on sample bottle; label sample bottle			
Sample ID:	240226-11	-WC	
Approx Sample Volume (mL):	14/000ML		
Clarity (ex. Clear, Cloudy, Silty):	5144		
Color (ex. Clear, Gray, Tan, Brown, Black):	Brann		
QA/QC Sample ID:	×	-103	(Time: 1200)

	Subsample Information									
Trigger #	Date/Time Error Message/ Subsample Result		Trigger #	Date/Time	Error Message/ Subsample Result					
1	2/24,0923	Success	13	2/26 1325	Succeps					
2	0940		14	1 1344						
3	0956		15	1356						
4	1010		16	1404						
5	1023		17	1411						
6	1037		18	1416						
7	1051		19	420						
8	1108		20	1425						
9	1128		21	1428						
10	1150		22	1432						
11	1219		23	1436						
12	1254		24	1439						

Comments:

If sampling is complete:

- Power off sampler, if separate from flowmeter
- □ Keep flowmeter running
- □ Add ice to sample transport cooler

- If continuing sampling (sample bottle change-out): 🕱 Keep flowmeter running 🞗 Install new 15L bottle; add ice Restart program from beginning Date/Time Restarted: 2, かん レーンン

 - 🛛 Verify running

	Liquid Height vs. Approximate Sample Volume Conversion Chart										
Liquid Height	Sample Volume	Liquid Height	Sample Volume	Liquid Height	Sample Volume	Liquid Height	Sample Volume	Liquid Height	Sample		
0.5"	400 mL	3.0"	3500 mL	5.5"	7250 mL	8.0"	11000 mL	10.5"	14750 ml		
1.0"	800 mL	3.5"	4250 mL	6.0"	8000 mL	8.5"	11750 mL	11.0"	15500 ml		
1.5"	1400 mL	4.0"	5000 mL	6.5"	8750 mL	9.0"	12500 mL	11.5"	16250 mL		
2.0"	2000 mL	4.5"	5750 mL	7.0"	9500 mL	9.5"	13250 mL	After 12"	1" = 1500 mL		
2.5"	2750 mL	5.0"	6500 mL	7.5"	10250 mL	(10.0"	14000 mL >	Lab min	8.000 mL		

Composite Sample Collection Bottle 2____ of _____

STATION: WA rulater.

Date/Time On-Site: _

Halt sampler program			
Put lid on sample bottle; label sample bottle			
Sample ID:	240226-11	-WC	
Approx Sample Volume (mL):	9500 mL		
Clarity (ex. Clear, Cloudy, Silty):	Silty		
Color (ex. Clear, Gray, Tan, Brown, Black):	Bisson		
QA/QC Sample ID:		-103	(Time: 1200)

		Subsam	ole Informatio	n	
Trigger #	Date/Time	Date/Time Error Message/ Subsample Result		Date/Time	Error Message/ Subsample Result
1	2/26/24 14/55	Success	13	2/26/24/715	Success
2	1500		14	1 1746	P
3	1505		15	1824	
4	1511		16	1908	
5	1517		17		
6	1525		18		
7	533		19		6.0
8	1543		20		
9	1555		21		
10	1609		22		
11	1627		23		
12	1648		24		

Comments:

If sampling is complete:

- Power off sampler, if separate from flowmeter Keep flowmeter running Add ice to sample transport cooler

If continuing sampling (sample bottle change-out):

- □ Keep flowmeter running
- □ Install new 15L bottle; add ice
- □ Restart program from beginning

Date/Time Restarted: _____

□ Verify running

			Liquid Height	vs. Approxim	ate Sample Volu	me Convers	sion Chart		
Liquid Height	Sample Volume								
0.5"	400 mL	3.0"	3500 mL	5.5"	7250 mL	8.0"	11000 mL	10.5"	14750 mL
1.0"	800 mL	3.5"	4250 mL	6.0"	8000 mL	8.5"	11750 mL	11.0"	15500 mL
1.5"	1400 mL	4.0"	5000 mL	6.5"	8750 mL	9.0"	12500 mL	11.5"	16250 mL
2.0"	2000 mL	4.5"	5750 mL	(7.0"	9500 mL	9.5"	13250 mL	After 12"	1" = 1500 mL
2.5"	2750 mL	5.0"	6500 mL	7.5"	10250 mL	10.0"	14000 mL	Lab min	8,000 mL

Set Up/ Shut Down Form – HACH (Lucky, Main, AS_6)

TATION: 10000					
ET UP					
Personnal: KC ST	Time	Level (in)	Flow (cfs)	Velocity (fps)	Battery (V)
Personnel. <u>PO707</u>	1136	0.87	0,00	0.00	128
Date/Time					
On-Site: 413/14 199		- his Condition or	Volacity Cutoff	1/8/7	
	En	able Condition or	Deadband:	1001	
			Trigger Volume:	3411	

Perform decon. cycle

X Leave bottle lid at site, in a clean re-sealable plastic bag

🛛 Verify all cable and tubing connections

Check date and time on flowmeter and sampler

🖄 Set flowmeter program and sampler program parameters

Set logging interval to 1 minute

Start flowmeter program and sampler program

Verify running

Comments:

SHUT DOWN

Personnel: ST	Time	Level (in)	Flow (cfs)	Velocity (fps)	Total (cf)	Battery (V)
Personnei.	1647	0.85	0.00.	0.00		12.4
Date/Time	Do	wnloaded to:	-Steven	is use	_	
On-Site: 2724						

If flow monitoring is complete:	If continuing to monitor flow:
Halt program on flowmeter	Replace flowmeter battery
Download flowmeter data	Reset logging interval to 15 minutes
Remove flowmeter battery	Change velocity cutoff to 0.02 fps
	□ Start program
	□ Verify running

Comments:

Composite Sample Collection

STATION: Main

Personnel: KC,ST

 Bottle
 of
 2_____

 Date/Time On-Site:
 2/24/24
 1440

🗭 Halt sampler program			
Put lid on sample bottle; label sample bottle			
Sample ID:	240226-2012	-WC	
Approx Sample Volume (mL):	13250 ml		
Clarity (ex. Clear, Cloudy, Silty):	Fritty		
Color (ex. Clear, Gray, Tan, Brown, Black):	Brown		
QA/QC Sample ID:		-103	(Time: 1200)

Subsample Information								
Trigger #	Date/Time	Error Message/ Subsample Result	Trigger #	Date/Time	Error Message/ Subsample Result			
1	2/25/24 7238	Success	13	2/20/24 1318	Success			
2	2304	1	14	1330				
3	2326		15	1341				
4	2/210/24 0835		16	1349				
5	0858		17	355				
6	0909		18	1400				
7	0921		19	1405				
8	0937		20	1410				
9	1013		21	1415				
10	1042		22	1421				
11	1142		23	1429				
12	V 1304	\checkmark	24	V 1440	\checkmark			

Comments:

If sampling is complete:

- D Power off sampler, if separate from flowmeter
- Keep flowmeter running
- □ Add ice to sample transport cooler

If continuing sampling (sample bottle change-out): Keep flowmeter running Market Install new 15L bottle, add ice Restart program from beginning Date/Time Restarted: 2/20/24 1443 Verify running

Liquid Height vs. Approximate Sample Volume Conversion Chart									
Liquid	Sample	Liquid	Sample	Liquid	Sample	Liquid	Sample	Liquid	Sample
Height	Volume	Height	Volume	Height	Volume	Height	Volume	Height	Volume
0.5"	400 mL	3.0"	3500 mL	5.5"	7250 mL	8.0"	11000 mL	10.5"	14750 mL
1.0"	800 mL	3.5"	4250 mL	6.0"	8000 mL	8.5"	11750 mL	11.0"	15500 mL
1.5"	1400 mL	4.0"	5000 mL	6.5"	8750 mL	9.0"	12500 mL	11.5"	16250 mL
2.0"	2000 mL	4.5"	5750 mL	7.0"	9500 mL	9.5"	13250 mL	After 12"	1" = 1500 mL
2.5"	2750 ml	5.0"	6500 mL	7.5"	10250 mL	10.0"	14000 mL	Lab min	8,000 mL
						A			

Composite Sample Collection Bottle 2_of 2

STATION:

Personnel: 崔

Date/Time On-Site: ____

Halt sampler program			
Put lid on sample bottle; label sample bottle			
Sample ID:	7.40226-12	-WC	
Approx Sample Volume (mL):	ROUML		
Clarity (ex. Clear, Cloudy, Silty):	Clear		
Color (ex. Clear, Gray, Tan, Brown, Black):	ten		
QA/QC Sample ID:		-103	(Time: 1200)

Subsample Information							
Trigger #	Date/Time	Error Message/ Subsample Result	Trigger #	Date/Time	Error Message/ Subsample Result		
1	2/20/24 1502	Sucress	13	48			
2	1 1601		14				
3			15				
4			16				
5			17				
6			18		9		
7			19				
8	-		20				
9			21				
10			22				
11			23				
12			24				

Comments:

If sampling is complete:

Power off sampler, if separate from flowmeter
 Keep flowmeter running
 Add ice to sample transport cooler

If	continuing	sampling	(sample	bottle	change-out)
	CONTINUING	Jumphing	Jampie		

- □ Keep flowmeter running
- □ Install new 15L bottle; add ice
- □ Restart program from beginning
- Date/Time Restarted: _____
- Verify running

	Liquid Height vs. Approximate Sample Volume Conversion Chart								
Liquid Height	Sample Volume	Liquid Height	Sample Volume	Liquid Height	Sample Volume	Liquid Height	Sample Volume	Liquid Height	Sample Volume
0.5	400 mL	3.0"	3500 mL	5.5"	7250 mL	8.0"	11000 mL	10.5"	14750 mL
(1.0"	800 mL	3.5"	4250 mL	6.0"	8000 mL	8.5"	11750 mL	11.0"	15500 mL
15-	1400 mL	4.0"	5000 mL	6.5"	8750 mL	9.0"	12500 mL	11.5"	16250 mL
2.0"	2000 mL	4.5"	5750 mL	7.0"	9500 mL	9.5"	13250 mL	After 12"	1" = 1500 mL
2.5"	2750 mL	5.0"	6500 mL	7.5"	10250 mL	10.0"	14000 mL	Lab min	8,000 mL

Set Up/ Shut Down Form – ISCO (Whitewater, Americana, State)

TATION: Americana SET UP Time Level (in) Flow (cfs) Velocity (fps) Battery (V) Personnel: 10,5T 5,53 217 7 1.68 7.00 Date/Time 1217 On-Site: 2 **Enable Condition:** 7.59 Hysteresis: 1.00 Flow Pulse Interval: 296Dr **On-Site** Flowlink (Refer to PG 411 or PG 412, if needed) Replace flowmeter battery, install sampler battery Direct or Remote; Date/time Did not need to downlose 🕅 Perform decon. cycle Retrieve data and review recent flow history 🕰 Install 15L sample bottle, with ice X Change Wireless Power Control to Storm Event 🙀 Leave bottle lid at site, in a clean re-sealable plastic bag 🕅 Change Data Storage Rates to 1 minute for Level, Set sampler program parameters Velocity, Total Flow, and Flow Rate Check date/time on sampler Discrete Sampler: On Trigger, and set Sampler Enable Verify all cable and tubing connections equation X Verify sampler program is running 🔊 Set Sampler Pacing to Flow Paced, and set trigger volume comments: Data not downloaded. Recent flow history was newed on the flowmeter Screen.

SHUT DOWN

Personnel: <u>ST</u>	Time	Level (in)	Flow (cfs)	Velocity (fps)	Battery (V)
	15:03	5.56	1.80	2.217	11.90
Date/Time	D	ownloaded to:	Flowlink		
On-Site:					

<u>On-Site</u>	Flowlink (Refer to Flowlink Instructions, if needed)		
Replace flowmeter battery			
Are the second s	🔀 Retrieve data		
	Change Wireless Power Control to Dry Weather		
	Change Data Storage Rates to 15 minutes for Level,		
	Velocity, Total Flow, and Flow Rate		
	🔀 Enable Sampler: Never		

Comments:

STATION:	Americana

Composite Sample Collection

Bottle 1 of 2

Personnel: ST, KC

Date/Time On-Site: 2/26/24 1415

Halt sampler program			
Put lid on sample bottle; label sample bottle			
Sample ID:	240226-14	-WC	
Approx Sample Volume (mL):	12,500 mi		
Clarity (ex. Clear, Cloudy, Silty):	Silvy		
Color (ex. Clear, Gray, Tan, Brown, Black):	Crown		
QA/QC Sample ID:		-103	(Time: 1200)

Subsample Information							
Trigger #	Date/Time	Error Message/ Subsample Result	Trigger #	Date/Time	Error Message/ Subsample Result		
1	2/24/0857	SUCCESS	13	2/26/24/106	Support		
2	1 2H 0908		14	1 1121	1		
3	0918		15	1137			
4	15926	(the constant	16	13/ +150			
5	0935	V V	17	1321			
6	09244	Samolo succed	18	1330			
7	0954	Success	19	1339	V		
8	1005		20	1347	Skinned		
9	1018		21	1354	Success		
10	1031		22	1400			
11	1042		23	1405			
12	1053	\checkmark	24	14D	V		

Comments:

If sampling is complete:

- D Power off sampler, if separate from flowmeter
- □ Keep flowmeter running
- □ Add ice to sample transport cooler

- If continuing sampling (sample bottle change-out): 🕱 Keep flowmeter running X Install new 15L bottle; add ice
 - Restart program from beginning 1418
 - Date/Time Restarted: 7-176
 - KVerify running

Liquid Height vs. Approximate Sample Volume Conversion Chart									
Liquid Height	Sample Volume	Liquid Height	Sample Volume	Liquid Height	Sample Volume	Liquid Height	Sample Volume	Liquid Height	Sample Volume
0.5"	400 mL	3.0"	3500 mL	5.5"	7250 mL	8.0"	11000 mL	10.5"	14750 ml
1.0"	800 mL	3.5"	4250 mL	6.0"	8000 mL	8.5"	11750 mL	11.0"	15500 mL
1.5"	1400 mL	4.0"	5000 mL	6.5"	8750 mL	9.0*	12500 mL	11.5"	16250 mL
2.0"	2000 mL	4.5"	5750 mL	7.0"	9500 mL	9.5"	13250 mL	After 12"	1" = 1500 mL
2.5"	2750 mL	5.0"	6500 mL	7.5"	10250 mL	10.0"	14000 mL	Lab min	8 000 ml

Composite Sample Collection

STATION: icana

<u>Bottle 7_ of 2_</u> Date/Time On-Site: <u>2/26/24</u> 1805

Halt sampler program			
A Put lid on sample bottle; label sample bottle			
Sample ID:	2.40226 -14	-WC	
Approx Sample Volume (mL):	\$,000 ml		
Clarity (ex. Clear, Cloudy, Silty):	Cloudy		
Color (ex. Clear, Gray, Tan, Brown, Black):	Tan		
QA/QC Sample ID:		-103	(Time: 1200)

Subsample Information								
Trigger #	Date/Time	Error Message/ Subsample Result	Trigger #	Date/Time	Error Message/ Subsample Result			
1	2/21/24 14 20	Success	13	2/26/24 11006	Successk			
2	1425		14		17			
3	1430		15					
4	1436		16					
5	1442		17					
6	1448		18	19				
7	1455		19					
8	1553		20					
9	1512		21					
10	1523		22					
11	1535		23					
12	V 1549	V	24					

Comments:

- If sampling is complete: KU Power off sampler, if separate from flowmeter Keep flowmeter running Add ice to sample transport cooler

If continuing sampling (sample bottle change-out):

- □ Keep flowmeter running
- □ Install new 15L bottle; add ice
- □ Restart program from beginning

Date/Time Restarted: _____

□ Verify running

Liquid Height vs. Approximate Sample Volume Conversion Chart									
Liquid Height	Sample Volume	Liquid Height	Sample Volume	Liquid Height	Sample Volume	Liquid Height	Sample Volume	Liquid Height	Sample Volume
0.5"	400 mL	3.0"	3500 mL	5.5"	7250 mL	8.0"	11000 mL	10.5"	14750 mL
1.0"	800 mL	3.5"	4250 mL	6.0"	_ 8000 mD	8.5"	11750 mL	11.0"	15500 mL
1.5"	1400 mL	4.0"	5000 mL	6.5"	8750 mL	9.0"	12500 mL	11.5"	16250 mL
2.0"	2000 mL	4.5"	5750 mL	7.0"	9500 mL	9.5"	13250 mL	After 12"	1" = 1500 mL
2.5"	2750 mL	5.0"	6500 mL	7.5"	10250 mL	10.0"	14000 mL	Lab min	8,000 mL
Set Up/ Shut Down Form – HACH (Lucky, Main, AS_6)

ET UP							
Porconnel: KC ST	Tin	ne Le	vel (in)	Flow (cfs)	Velocity (fps)	Ba	ttery (V)
	1255	5 O.	00	0.00	0.00	11	9-12.
Date/Time On-Site: 2/25/24 1253							
		Enable Co	ndition or '	/elocity Cutoff	0.02		
	· · · · · · · · · · · · · · · · · · ·			Deadband	: .		
			1	rigger Volume	: 26		
Check date and time on flowmeter and Set flowmeter program and sampler pro Set logging interval to 1 minute Start flowmeter program and sampler p	sampler ogram parameter orogram	S					
Check date and time on flowmeter and Set flowmeter program and sampler pro Set logging interval to 1 minute Start flowmeter program and sampler program and program and sampler program and pr	sampler ogram parameter program	S					
Check date and time on flowmeter and Set flowmeter program and sampler pro Set logging interval to 1 minute Start flowmeter program and sampler pro Verify running Somments:	sampler ogram parameter program Time	s Level (in)	Flow (c	fs) Velocity	r (fps) Total	(cf)	Battery (\
Check date and time on flowmeter and Set flowmeter program and sampler pro- Set logging interval to 1 minute Start flowmeter program and sampler pro- Verify running Somments:	sampler ogram parameter program Time	s Level (in)	Flow (c	fs) Velocity 0.00	r (fps) Total	(cf) ୳ୢଽୣଌ	Battery (1
Check date and time on flowmeter and Set flowmeter program and sampler pro- Set logging interval to 1 minute Start flowmeter program and sampler pro- Verify running Domments:	sampler ogram parameter program Time <u>V363</u> Dov	s Level (in) D.000 vnloaded to:	Flow (c ວ.ບ໐ ຂບງເ	fs) Velocity 0.00 e - 5 -	r (fps) Total ひろくろう	(cf) ୳ୢଽୖ	Battery (\ \2.4
Check date and time on flowmeter and Check date and time on flowmeter and Set flowmeter program and sampler pro- Set logging interval to 1 minute Start flowmeter program and sampler pro- Verify running Domments: -UT DOWN Personnel:	sampler ogram parameter program Time \353 Dov	s Level (in) D.000 vnloaded to:	Flow (c 5.00 Ruge	fs) Velocity 0.00 el - Sol	r (fps) Total 54 54 54 54	(cf) ୳ୢଽୖ	Battery (\ \2.4
Check date and time on flowmeter and Check date and time on flowmeter and Set flowmeter program and sampler pro- Set logging interval to 1 minute Start flowmeter program and sampler pro- Verify running Demments:	sampler ogram parameter program Time \353 Dov	s Level (in) D.000 vnloaded to:	Flow (c b.00 Ruge	fs) Velocity 0.00 e - 5	r(fps) Total 5 5 5 4 5 4 5 4	(cf) ଏଟ୍ଟସ	Battery (\ \2.4

Comments:

STATION: AS-6 Personnel: KC.ST

Composite Sample Collection

Bottle _____ of ____ Date/Time On-Site: 2/26/24 1953

Hait sampler program			
Put lid on sample bottle; label sample bottle			
Sample ID:	240226-206	-WC	
Approx Sample Volume (mL):	12,500mL		
Clarity (ex. Clear, Cloudy, Silty):	Sulty		
Color (ex. Clear, Gray, Tan, Brown, Black):	Brown		
QA/QC Sample ID:		-103	(Time: 1200)

	Subsample Information											
Trigger #	Date/Time	Error Message/ Subsample Result	Trigger #	Date/Time	Error Message/ Subsample Result							
1	2/210/24 1004	Success	13	2/20/2/1425	Success							
2	1028		14	1430								
3	057		15	1434								
4	1202		16	1439								
5	1326		17	1443								
6	1343		18	1449								
7	1354		19	1455								
8	1401		20	1502								
9	1407		21	1511								
10	1412		22	1523								
11	1416		23	1540								
12	42.	\checkmark	24									

Comments:

If sampling is complete:	If continuing sampling (sample bottle change-out):
Power off sampler, if separate from flowmeter	🕱 Keep flowmeter running
Keep flowmeter running	🙀 Install new 15L bottle, add ice
Add ice to sample transport cooler	Restart program from beginning
	Date/Time Restarted: 7 126 4:01
	Verify running

	Liquid Height vs. Approximate Sample Volume Conversion Chart										
Liquid	Sample	Liquid	Sample	Liquid	Sample	Liquid	Sample	Liquid	Sample		
Height	Volume	Height	Volume	Height	Volume	Height	Volume	Height	Volume		
0.5"	400 mL	3.0"	3500 mL	5.5"	7250 mL	8.0"	11000 mL	10.5"	14750 mL		
1.0"	800 mL	3.5"	4250 mL	6.0"	8000 mL	8.5"	11750 mL	11.0"	15500 mL		
1.5"	1400 mL	4.0"	5000 mL	6.5"	8750 mL	9.0"	12500 mL	11.5"	16250 mL		
2.0"	2000 mL	4.5"	5750 mL	7.0"	9500 mL	9.5"	13250 mL	After 12"	1" = 1500 mL		
2.5"	2750 mL	5.0"	6500 mL	7.5"	10250 mL	10.0"	14000 mL	Lab min	8,000 mL		

Composite Sample Collection

STATION: AS_C

Personnel: V

Bottle 2 of 2 Date/Time On-Site: 2/10/14 1853

🖼 Halt sampler program			
D Put lid on sample bottle; label sample bottle			
Sample ID:	240226 - 206	-WC	
Approx Sample Volume (mL):	400 ml		
Clarity (ex. Clear, Cloudy, Silty):	Clear		
Color (ex. Clear, Gray, Tan, Brown, Black):	Tan		
QA/QC Sample ID:		-103	(Time: 1200)

Subsample Information Date/Time Error Message/ Date/Time Error Message/ Trigger Trigger Subsample Result # Subsample Result # 13 1 2 26 24 11020 ŝ cred 2 14 15 3 16 4 17 5 6 18 7 19 20 8 21 9 10 22 11 23 24 12

Comments:

If sampling is complete:

- Power off sampler, if separate from flowmeter
- Keep flowmeter running
 Add ice to sample transport cooler

- If continuing sampling (sample bottle change-out):
 - □ Keep flowmeter running
 - □ Install new 15L bottle; add ice
 - □ Restart program from beginning

Date/Time Restarted: _____

□ Verify running

		No. of Concession	Liquid Height	s. Approxim	ate Sample Vol	ume Convers	sion Chart		
Liquid	Sample	Liquid	Sample	Liquid	Sample	Liquid	Sample	Liquid	Sample
Height	Volume	Height	Volume	Height	Volume	Height	Volume	Height	Volume
0.5"	400 mL	3.0"	3500 mL	5.5"	7250 mL	8.0"	11000 mL	10.5"	14750 mL
1.0"	800 mL	3.5"	4250 mL	6.0"	8000 mL	8.5"	11750 mL	11.0"	15500 mL
1.5"	1400 mL	4.0"	5000 mL	6.5"	8750 mL	9.0"	12500 mL	11.5"	16250 mL
2.0"	2000 mL	4.5"	5750 mL	7.0"	9500 mL	9.5"	13250 mL	After 12"	1" = 1500 mL
2.5"	2750 mL	5.0"	6500 mL	7.5"	10250 mL	10.0"	14000 mL	Lab min	8,000 mL

Attachment D: Storm Event Analytical Reports

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Samples in this Report

Lab ID	Sample	Sample Description	Matrix Qualifiers	Date Sampled	Date Received
AC00332-01	ACST1B	240226-03-WG	Water	02/26/2024	02/26/2024
AC00332-02	ACST1B	240226-11-WG	Water	02/26/2024	02/26/2024
AC00332-03	ACST1B	240226-12-WG	Water	02/26/2024	02/26/2024
AC00332-04	ACST1B	240226-12-101	Water	02/26/2024	02/26/2024
AC00332-05	ACST1B	240226-12-001	Water	02/26/2024	02/26/2024
AC00332-06	ACST1B	240226-14-WG	Water	02/26/2024	02/26/2024

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Analysis Report

Location:	ACST1	IB				Location Description:	240226-0	3-WG		
Date/Time Collecte	ed: 02/26/2	2024 10:17	7							
Lab Number:	AC003	32-01				Sample Collector:	S.T			
Sample Type:	Grab					Sample Matrix:	Water			
Analyte Name	Batch	Result	Units	Adjusted MDL *	Method MDL	Analysis Method Reference	Prepared	Analyzed	Analyst Initials	Qualifier
Microbiology E. Coli	B240669	37.9N	IPN/100 mL	. 1.0	1.0	IDEXX - Colilert	02/26/24 13:24	2/27/24 13:41	KMR	
Wet Chemistry Chlorine Screen	B240674	Absent				SM 4500-CL G-2000 mod	02/26/24	2/26/24 12:38	ALN	

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Analysis Report

Location:	ACST1	В				Location Description:	240226-1	1-WG			
Date/Time Collecte	ed: 02/26/2	2024 09:28	3								
Lab Number:	AC003	32-02			Sample Collector:		S.T				
Sample Type:	Grab					Sample Matrix:	Water				
Analyte Name	Batch	Result	Units	Adjusted MDL *	Method MDL	Analysis Method Reference	Prepared	Analyzed	Analyst Initials	Qualifier	
Microbiology E. Coli	B240669	38.3 M	IPN/100 mL	1.0	1.0	IDEXX - Colilert	02/26/24 13:24	2/27/24 13:41	KMR		
Wet Chemistry Chlorine Screen	B240674	Absent				SM 4500-CL G-2000 mod	02/26/24	2/26/24 12:38	ALN		

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Analysis Report

Location:	ACST1	В				Location Description:	240226-1	2-WG		
Date/Time Collecte	d: 02/26/2	2024 09:19)							
Lab Number:	AC003	32-03				Sample Collector:	L.S			
Sample Type:	Grab					Sample Matrix:	Water			
Analyte Name	Batch	Result	Units	Adjusted MDL *	Method MDL	Analysis Method Reference	Prepared	Analyzed	Analyst Initials	Qualifier
Microbiology E. Coli	B240669	24.3 M	IPN/100 mL	1.0	1.0	IDEXX - Colilert	02/26/24 13:24	2/27/24 13:41	KMR	
Wet Chemistry Chlorine Screen	B240674	Absent				SM 4500-CL G-2000 mod	02/26/24	2/26/24 12:38	ALN	

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Analysis Report

Location:	ACST1	В				Location Description:	240226-1	2-101			
Date/Time Collecte	ed: 02/26/2	2024 12:00)								
Lab Number:	AC003	32-04				Sample Collector:	L.S				
Sample Type:	Grab					Sample Matrix:					
Analyte Name	Batch	Result	Units	Adjusted MDL *	Method MDL	Analysis Method Reference	Prepared	Analyzed	Analyst Initials	Qualifier	
Microbiology E. Coli	B240669	26.9N	IPN /100 mL	1.0	1.0	IDEXX - Colilert	02/26/24 13:24	2/27/24 13:41	KMR		
Wet Chemistry Chlorine Screen	B240674	Absent				SM 4500-CL G-2000 mod	02/26/24	2/26/24 12:38	ALN		

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Analysis Report

Location: Date/Time Collecter	ACST1 d: 02/26//	IB 2024 12:00)			Location Description:	240226-1	2-001		
Lab Number:	AC003	32-05				Sample Collector:	L.S			
Sample Type:	Grab					Sample Matrix:	Water			
Analyte Name	Batch	Result	Units	Adjusted MDL *	Method MDL	Analysis Method Reference	Prepared	Analyzed	Analyst Initials	Qualifier
Microbiology E. Coli	B240669	<1.0M	PN/100 mL	1.0	1.0	IDEXX - Colilert	02/26/24 13:24	2/27/24 13:41	KMR	U
Wet Chemistry Chlorine Screen	B240674	Absent				SM 4500-CL G-2000 mod	02/26/24	2/26/24 12:42	ALN	95

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Analysis Report

Location:	ACST1	IB				Location Description:	240226-1	4-WG		
Date/Time Collecte	d: 02/26/2	2024 09:48								
Lab Number:	AC003	32-06				Sample Collector:	M.V			
Sample Type:	Grab					Sample Matrix:	Water			
Analyte Name	Batch	Result	Units	Adjusted MDL *	Method MDL	Analysis Method Reference	Prepared	Analyzed	Analyst Initials	Qualifier
Microbiology E. Coli	B240669	125.9 M	PN/100 mL	. 1.0	1.0	IDEXX - Colilert	02/26/24 13:24	2/27/24 13:41	KMR	
Wet Chemistry Chlorine Screen	B240674	Absent				SM 4500-CL G-2000 mod	02/26/24	2/26/24 12:42	ALN	

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Quality Control Report

Analyte Name	Method Blank U	Inits	% Recovery	Recovery Limits	RPD	RPD Limit	Analyzed	Analyst Initials	Qualifier
Microbiology			···						
Batch: B240669 Blank (B240669-BLK1) E. Coli	Absent						02/27/2024	KMR	
LCS (B240669-BS1) E. Coli				Present			02/27/2024	KMR	
Duplicate (B240669-DUP1) E. Coli	Source ID: WB029	77-06			Pass	128	02/27/2024	KMR	
Duplicate (B240669-DUP2) E. Coli	Source ID: AC0033	32-01			Pass	128	02/27/2024	KMR	

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Notes and Definitions

ltem	Definition
<u> </u>	Analyte included in the analysis, but not detected

Method Reference Acronyms

Colilert	Colilert, IDEXX Laboratories, Inc.
EPA	Manual of Methods for Chemical Analysis of Water and Wastes, USEPA
GS	USGS Techniques of Water-Resources Investigations
HH	Hach Spectrophotometer Procedures Manual
SM	Standard Methods for the Examination of Water and Wastewater
SW	Test methods for Evaluating Solid Waste, SW-846

for JFK

Janet Finegan-Kelly Water Quality Laboratory Manager

Stephen Quintero or Azubike Emenari QA/QC Coordinator

Ada Co	unty Hig	hway [District							1												1
Attn: Steve 3775 Adar Garden Ci Tel. (208) Fax (208) Purchase Project: Sampler(s	en Turner ns Street ty, Idaho 8 387–6269 387–6391 Order:):	3714–64	630656 Stormw Stever Paul- Kuster Scind	28 ater-PI Bomk n (Jui sey S	ur sticim	<u>v</u>	Matrix	Ту	pe	10.8	00		с. .2		e - EPA 365.1	o - EPA 200.8	, Zn - EPA 200.8	A 245.2 Codilert	180.1	A 200.7	A 353.2	NH _a - D
Lab# Accosss	Begin Date	End Date	Begin Time	, End Time	Sample Identification	Sampler Initia	Water	Grab	Composite	BOD5 - SM 52	COD - Hach 80	TSS - SM 2540	TKN - EPA 35	TP - EPA 200.7	Orthophosphate	Total As, Cd, PI	Diss. Cd Cu, Pt	E. Coli - IDEXX	Turbidity - EPA	Hardness - EP,	NO ₃ +NO ₂ - EP	Totol Contrine
-01	2/210/2-1		1017		240226-03-WG	ST	X	X	1) 101 - 100 - 11									X				1
-02			0928		240226-11-WG	ST	X	X										X				1
-03	1		0919		240226 - 12 - WG	15	Ý	X										X				I
-04			1200		240226-12-101	15	X	X										X				1
-05			1200		240226 - 12 - 001	is	X	X				1						¥				
-06	\downarrow		0948		240226-14-WG	HV	X	X										×				1
															-							
Relinguis	hed by (si	gn)	Date Tran	& Time sferred	Received by (sign)				Co	omn	nent	s/S	peci	al i	nsti	ruct	ions	s:				_
Spite (Vish	h	3/26/2	24 12	2-26-24 21 April 2-26-24 1204																	

C-278 WY24

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Samples in this Report

Lab ID	Sample	Sample Description	Matrix	Qualifiers	Date Sampled	Date Received
AC00333-01	ACST1B	240226-206-WG	Water		02/26/2024	02/26/2024

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Analysis Report

Location: Date/Time Collecte	ACST1 d: 02/26/2	B 2024 10:12	2			Location Description:	240226-2	06-WG		
Lab Number:	AC003	33-01				Sample Collector:	M.V			
Sample Type:	Grab					Sample Matrix:	Water			
Analyte Name	Batch	Result	Units	Adjusted MDL *	Method MDL	Analysis Method Reference	Prepared	Analyzed	Analyst Initials	Qualifier
Microbiology E. Coli	B240669	53.7 M	IPN/100 mL	1.0	1.0	IDEXX - Colilert	02/26/24 13:24	2/27/24 13:41	KMR	
Wet Chemistry Chlorine Screen	B240674	Absent				SM 4500-CL G-2000 mod	02/26/24	2/26/24 12:42	ALN	

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Quality Control Report

Analyte Name	Method Blank L	Jnits	% Recovery	Recovery Limits	RPD	RPD Limit	Analyzed	Analyst Initials	Qualifier
Microbiology Batch: B240669 Blank (B240669-BLK1) E. Coli	Absent						02/27/2024	KMR	
LCS (B240669-BS1) E. Coli				Present			02/27/2024	KMR	
Duplicate (B240669-DUP1) E. Coli	Source ID: WB029	977-06			Pass	128	02/27/2024	KMR	
Duplicate (B240669-DUP2) E. Coli	Source ID: AC003	32-01			Pass	128	02/27/2024	KMR	

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Notes and Definitions

Item Definition

No notes entered.

Method Reference Acronyms

Colilert	Colilert, IDEXX Laboratories, Inc.
EPA	Manual of Methods for Chemical Analysis of Water and Wastes, USEPA
GS	USGS Techniques of Water-Resources Investigations
HH	Hach Spectrophotometer Procedures Manual
SM	Standard Methods for the Examination of Water and Wastewater
SW	Test methods for Evaluating Solid Waste, SW-846

for JFK

Janet Finegan-Kelly Water Quality Laboratory Manager

Stephen Quintero dr Azubike Emenari QA/QC Coordinator

Ada Co	unty Hig	hway D	District							-1 54 1 5-44 1 5-44										948949444	81.81.954 6 1.9 vildi p.p. 1	
Attn: Steve 3775 Adar Garden Ci Tel. (208) Fax (208) Purchase Project: Sampler(s	en Turner ns Street ty, Idaho 8 387–6269 387–6391 Order:):	3714–64	630656 Stormw Kinster Lindsi Milie	i28 vater-PI D Chris Ly Si Van L	hdm ncot ydigraf	Matrix		Ту	De	10 B	00	Q	C	7	e - EPA 365.1	b - EPA 200.8	o, Zn - EPA 200.8	A 245.2 C Colliert	v 180.1	A 200.7	A 353.2	NH3 - D
Lab# Accr3333	Begin Date	End Date	Begin Time	End Time	Sample Identification	Sampler Initial	Water	Grab	Composite	BOD ₅ - SM 52	COD - Hach 80	TSS - SM 2540	TDS - SM 2540	TP - FPA 200 7	Orthophosphate	Total As, Cd, PI	Diss. Cd Cu, Pt	F Coli - IDEXX	Turbidity - EPA	Hardness - EP.	NO ₃ +NO ₂ - EP	<u>Total Container</u>
-D1	2126124		1012		240226-206-WG	MV	×	×										X.				
Relinquis Drister (2	shed by (s	ign)	Date Trar 2/26/21	e & Time Insferred	Received by (sign) 2-26-2 April R.S.H. 1204	4			C	om	mei	nts/\$	Spe	cial	Ins	truc	tion	IS:				

A(1)3233 WY24

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Samples in this Report

Lab ID	Sample	Sample Description	Matrix	Qualifiers	Date Sampled	Date Received
AC00337-01	ACST1C	240226-03-WC	Water		02/26/2024	02/27/2024
Comme	nts:					
	Container temp #	#1 - 4.8 C				
AC00337-02	ACST1C	240226-11-WC	Water		02/26/2024	02/27/2024
Comme	nts:					
	Container temps	:#1 - 6.4 C, #2 - 5.7 C				
AC00337-03	ACST1C	240226-12-WC	Water		02/26/2024	02/27/2024
Comme	nts:					
	Container temps	: #1 - 8.4 C, #2 - 7.2 C				
AC00337-04	ACST1C	240226-14-WC	Water		02/26/2024	02/27/2024
Comme	nts:					

Container temps: #1 - 7.4 C, #2 - 5.6 C

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Analysis Report

Analyte Name	Batch	Result	Units	Adjusted MDL *	Method MDL	Analysis Method Reference	Prepared	Analyzed	Analyst Initials	Qualifier
Lab Number: Sample Type:	AC003 Comp	337-01 osite				Sample Collector: Sample Matrix:	S.T Water			
Location: Date/Time Collected:	ACST 02/26/	1C 2024 09:05	5 - 02/26/	2024 15:34		Location Description:	240226-03	3-WC		

Wet Chemistry									
Ammonia, as N	B240744	0.476	mg/L	0.0500	0.0500	SM 4500-NH3 D-2011	03/01/24	3/1/24 11:29	MEC
BOD5	B240684	13.5	mg/L	2.00	2.00	SM 5210 B-2016	02/27/24	3/3/24 11:21	BAK
Chloride	B240796	8,92	mg/L	0.0150	0.0150	EPA 300.0, Rev. 2.1 (1993)	03/06/24	3/6/24 22:25	ALN
COD	B240680	60.0	mg/L	7.00	7.00	HH 8000, Standard Method 5220 D	02/27/24	2/27/24 10:52	MCB
Nitrate-Nitrite, as N	B240718	0,969	mg/L	0.0250	0.0250	EPA 353.2, Rev. 2.0 (1993)	02/29/24	2/29/24 12:18	LRF
TKN	B240816	1.71	mg/L	0.100	0.100	EPA 351.2, 10-107-06-2-M (Equivalent)	03/07/24	3/8/24 9:46	JAL
Total Dissolved Solids	B240696	114	mg/L	20.0	20.0	SM 2540 C-2015	02/28/24	2/29/24 13:59	MEC
Total Suspended Solids	B240708	18.1	mg/L	0.900	0.900	SM 2540 D-2015	02/28/24	2/28/24 10:21	RKT
Turbidity	B240698	18.9	NTU	0.3	0.3	EPA 180.1, Rev. 2.0 (1993)	02/28/24	2/28/24 8:26	ASE
Dissolved Wet Ch	emistry			51					

Orthophosphate, as P	B240685	0.124	mg/L	3.00E-3	3,00E-3	EPA 365.1, Rev. 2.0 (1993)	02/27/24	2/27/24 10:06	RKT
Total Metals									
Mercury	B240817	0.0150	ug/L	0.0100	0.0100	EPA 245.1	03/07/24	3/8/24 8:12	SAS
Arsenic	B240750	2.6	ug/L	0.070	0.070	EPA 200.8	03/02/24	3/3/24 13:49	DMW
Cadmium	B240750	0.031	ug/L	0.010	0.010	EPA 200.8	03/02/24	3/3/24 13:49	DMW
Calcium	B240695	17.6	mg/L	0.0400	0.0400	EPA 200.7	02/28/24	3/1/24 11:18	AMO
Lead	B240750	0.72	ug/L	0.010	0.010	EPA 200.8	03/02/24	3/3/24 13:49	DMW
Magnesium	B240695	2250	ug/L	80.0	80.0	EPA 200.7	02/28/24	3/1/24 11:18	AMO
Phosphorus as P	B240695	0.262	mg/L	0.0120	0.0120	EPA 200.7	02/28/24	3/1/24 11:18	AMO
Hardness	B240695	53.2	mg/L	0.100	0.100	SM 2340 B-2011	02/28/24	3/1/24 11 18	AMO
Dissolved Metals									2015)
Cadmium	B241178	0.011	ug/L	0.010	0.010	EPA 200.8	04/04/24	4/4/24 16:04	DMW
Copper	B240802	4.5	ug/L	0.15	0.15	EPA 200.8	03/08/24	3/8/24 16:28	DMW
Lead	B241178	0.028	ug/L	9.00E-3	9.00E-3	EPA 200.8	04/04/24	4/4/24 16:04	DMW
Zinc	B240802	13.5	ug/L	0.50	0.50	EPA 200.8	03/08/24	3/8/24 16:28	DMW

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Analysis Report

Location:	ACST	1C				Location Description:	24 0226-1	1-WC		
Date/Time Collected	d: 02/26/2	2024 09:23	3 - 02/26/	/2024 19:08						
Lab Number:	AC003	337-02				Sample Collector:	S.T			
Sample Type:	Compo	osite				Sample Matrix:	Water			
Analyte Name	Batch	Result	Units	Adjusted MDL *	Method MDL	Analysis Method Reference	Prepared	Analyzed	Analyst Initials	Qualifier
Wet Chemistry										
Ammonia, as N	B240744	0.596	mg/L	0.0500	0.0500	SM 4500-NH3 D-2011	03/01/24	3/1/24 11:45	MEC	
BOD5	B240684	12.6	mg/L	2.00	2.00	SM 5210 B-2016	02/27/24	3/3/24 11:12	BAK	
Chloride	B240796	44.4	mg/L	0.0150	0.0150	EPA 300.0, Rev. 2.1	03/07/24	3/7/24 0:10	ALN	
COD	B240680	84.0	mg/L	7.00	7.00	HH 8000, Standard Method 5220 D	02/27/24	2/27/24 10:58	MCB	
Nitrate-Nitrite, as N	B240718	0.921	mg/L	0.0250	0.0250	EPA 353.2, Rev. 2.0 (1993)	02/29/24	2/29/24 12:19	LRF	
ТКМ	B240816	2.43	mg/L	0.100	0.100	EPA 351.2, 10-107-06-2-M (Equivalent)	03/07/24	3/8/24 9:47	JAL	
Total Dissolved Solids	B240696	182	mg/L	20.0	20.0	SM 2540 C-2015	02/28/24	2/29/24 14:00	MEC	
Total Suspended Solids	B240683	47.3	mg/L	0.900	0.900	SM 2540 D-2015	02/27/24	2/27/24 10:25	MEC	
Turbidity	B240698	52.3	NTU	1.2	0.3	EPA 180.1, Rev. 2.0 (1993)	02/28/24	2/28/24 9:53	ASE	D
Dissolved Wet Ch	emistry									
Orthophosphate, as P	B240685	0.174	mg/L	3.00E-3	3.00E-3	EPA 365.1, Rev. 2.0 (1993)	02/27/24	2/27/24 10:07	RKT	
Total Metals										
Mercury	B240817	0.0151	ug/L	0.0100	0.0100	EPA 245.1	03/07/24	3/8/24 8:16	SAS	
Arsenic	B240750	2.6	ug/L	0.070	0.070	EPA 200.8	03/02/24	3/3/24 13:52	DMW	
Cadmium	B240750	0.062	ug/L	0.010	0.010	EPA 200.8	03/02/24	3/3/24 13:52	DMW	
Calcium	B240695	22.5	mg/L	0.0400	0.0400	EPA 200.7	02/28/24	3/1/24 11:24	AMO	
Lead	B240750	3.8	ug/L	0.010	0.010	EPA 200.8	03/02/24	3/3/24 13:52	DMW	
Magnesium	B240695	5260	ug/L	80.0	80.0	EPA 200.7	02/28/24	3/1/24 11:24	AMO	
Phosphorus as P	B240695	0.347	mg/L	0.0120	0.0120	EPA 200.7	02/28/24	3/1/24 11:24	AMO	
Hardness	B240695	77.8	mg/L	0.100	0.100	SM 2340 B-2011	02/28/24	3/1/24 11:24	AMO	
Dissolved Metals										
Cadmium	B241178	0.014	ug/L	0.010	0.010	EPA 200.8	04/04/24	4/4/24 16:07	DMW	
Copper	B240802	4.4	ug/L	0.15	0.15	EPA 200.8	03/08/24	3/8/24 16:30	DMW	

* The reported adjusted "MDL" is sample-specific. The analysis MDL as defined by 40 CFR pt 136 App.B. was corrected for dilution, dry weight, or method-defined ML.

9.00E-3

0.50

EPA 200.8

EPA 200.8

04/04/24

03/08/24

ug/L

ug/L

9.00E-3

0.50

0.093

24.5

B241178

B240802

Lead

Zinc

4/4/24 16:07 DMW

3/8/24 16:30 DMW

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Analysis Report

Location:	ACST1	CST1C Location Description		Location Description:	240226-1	2-WC				
Date/Time Collected	d: 02/25/2	2024 22:38	3 - 02/26/	2024 16:01						
Lab Number:	AC003	37-03				Sample Collector:	S.T			
Sample Type:	Compo	osite				Sample Matrix:	Water			
Analyte Name	Batch	Result	Units	Adjusted MDL *	Method MDL	Analysis Method Reference	Prepared	Analyzed	Analyst Initials	Qualifier
Wet Chemistry										
Ammonia, as N	B240744	0.829	mg/L	0.0500	0.0500	SM 4500-NH3 D-2011	03/01/24	3/1/24 11:37	MEC	
BOD5	B240684	13.9	mg/L	2.00	2.00	SM 5210 B-2016	02/27/24	3/3/24 11:07	BAK	
Chloride	B240796	17.0	mg/L	0.0150	0.0150	EPA 300.0, Rev. 2.1 (1993)	03/07/24	3/7/24 0:37	ALN	
COD	B240680	119	mg/L	7.00	7.00	HH 8000, Standard Method 5220 D	02/27/24	2/27/24 10:58	MCB	
Nitrate-Nitrite, as N	B240718	0.424	mg/L	0.0250	0.0250	EPA 353.2, Rev. 2.0 (1993)	02/29/24	2/29/24 12:21	LRF	
TKN	B240816	1.96	mg/L	0.100	0,100	EPA 351.2, 10-107-06-2-M (Equivalent)	03/07/24	3/8/24 9:48	JAL	
Total Dissolved Solids	B240696	85.2	mg/L	20.0	20.0	SM 2540 C-2015	02/28/24	2/29/24 14:01	MEC	
Total Suspended Solids	B240683	104	mg/L	0.900	0.900	SM 2540 D-2015	02/27/24	2/27/24 10:28	MEC	
Turbidity	B240698	94.7	NTU	1.2	0.3	EPA 180.1, Rev. 2.0 (1993)	02/28/24	2/28/24 9:08	ASE	D
Dissolved Wet Ch	emistry			- 14 5 5 million						
Orthophosphate, as P	B240685	0.0631	mg/L	3.00E-3	3.00E-3	EPA 365.1, Rev. 2.0 (1993)	02/27/24	2/27/24 10:09	RKT	
Total Metals										
Mercury	B240817	0.0191	ug/L	0.0100	0.0100	EPA 245.1	03/07/24	3/8/24 8:51	SAS	
Arsenic	B240750	1.5	ug/L	0,070	0.070	EPA 200.8	03/02/24	3/3/24 13:54	DMW	
Cadmium	B240750	0.13	ug/L	0.010	0.010	EPA 200.8	03/02/24	3/3/24 13:54	DMW	
Calcium	B240695	7.84	mg/L	0.0400	0.0400	EPA 200.7	02/28/24	3/1/24 11:51	AMO	
Lead	B240750	6.1	ug/L	0.010	0.010	EPA 200.8	03/02/24	3/3/24 13:54	DMW	
Magnesium	B240695	2470	ug/L	80.0	80.0	EPA 200.7	02/28/24	3/1/24 11:51	AMO	
Phosphorus as P	B240695	0.231	mg/L	0.0120	0.0120	EPA 200.7	02/28/24	3/1/24 11:51	AMO	
Hardness	B240695	29.8	mg/L	0.100	0.100	SM 2340 B-2011	02/28/24	3/1/24 11:51	AMO	
Dissolved Metals										

Cadmium B241178 0.032 ug/L 0.010 0.010 EPA 200.8 04/04/24 4/4/24 16:09 DMW Copper B240802 5.6 ug/L 0:15 0.15 EPA 200.8 03/08/24 3/8/24 16:33 DMW Lead B241178 0.12 ug/L 9.00E-3 9.00E-3 EPA 200.8 04/04/24 4/4/24 16:09 DMW Zinc B240802 51.7 ug/L 0.50 0.50 EPA 200.8 03/08/24 3/8/24 16:33 DMW

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Analysis Report

Phosphorus as P

Dissolved Metals

Hardness

Cadmium

Copper

Lead

Zinc

B240695

B240695

B241178

B240802

B241178

B240802

0.276

0.021

0.063

24.3

4.0

102

mg/L

mg/L

ug/L

ug/L

ug/L

ug/L

0.0120

0.100

0.010

0.15

9.00E-3

0.50

Location:	ACST	IC				Location Description:	240226-1	4-WC		
Date/Time Collected	d: 02/26/3	2024 08:57	- 02/26/	/2024 16:06						
Lab Number:	AC003	37-04				Sample Collector:	S.T			
Sample Type:	Compo	osite			Sample Matrix:	Water				
Analyte Name	Batch	Result	Units	Adjusted MDL *	Method MDL	Analysis Method Reference	Prepared	Analyzed	Analyst Initials	Qualifier
Wet Chemistry					_					
Ammonia, as N	B240744	0.496	mg/L	0.0500	0.0500	SM 4500-NH3 D-2011	03/01/24	3/1/24 11:39	MEC	
BOD5	B240684	12.6	mg/L	2.00	2,00	SM 5210 B-2016	02/27/24	3/3/24 11:01	BAK	
Chloride	B240796	56.1	mg/L	0.0150	0.0150	EPA 300.0, Rev. 2.1	03/07/24	3/7/24 1:03	ALN	
COD	B240680	85.0	mg/L	7.00	7,00	HH 8000, Standard Method 5220 D	02/27/24	2/27/24 10:58	MCB	
Nitrate-Nitrite, as N	B240718	0.940	mg/L	0.0250	0.0250	EPA 353.2, Rev. 2.0	02/29/24	2/29/24 12:22	LRF	
TKN	B240816	1.47	mg/L	0.100	0,100	EPA 351.2, 10-107-06-2-M (Equivalent)	03/07/24	3/8/24 9:49	JAL	
Total Dissolved Solids	B240696	214	mg/L	20.0	20.0	SM 2540 C-2015	02/28/24	2/29/24 14:03	MEC	
Total Suspended Solids	B240683	54.3	mg/L	0.900	0.900	SM 2540 D-2015	02/27/24	2/27/24 11:21	MEC	
Turbidity	B240698	51.1	NTU	1.2	0.3	EPA 180.1, Rev. 2.0 (1993)	02/28/24	2/28/24 10:00	ASE	D
Dissolved Wet Ch	emistry									
Orthophosphate, as P	B240685	0.106	mg/L	3.00E-3	3,00E-3	EPA 365.1, Rev. 2.0 (1993)	02/27/24	2/27/24 10:10	RKT	
Total Metals										
Mercury	B240817	0.0148	ug/L	0.0100	0.0100	EPA 245.1	03/07/24	3/8/24 8:54	SAS	
Arsenic	B240750	3.3	ug/L	0.070	0.070	EPA 200.8	03/02/24	3/3/24 13:57	DMW	
Cadmium	B240750	0.097	ug/L	0.010	0.010	EPA 200.8	03/02/24	3/3/24 13:57	DMW	
Calcium	B240695	31.4	mg/L	0.0400	0.0400	EPA 200.7	02/28/24	3/1/24 11:57	AMO	
Lead	B240750	3.9	ug/L	0.010	0.010	EPA 200.8	03/02/24	3/3/24 13:57	DMW	
Magnesium	B240695	5710	ug/L	80.0	80.0	EPA 200.7	02/28/24	3/1/24 11:57	AMO	

* The reported adjusted "MDL" is sample-specific. The analysis MDL as defined by 40 CFR pt 136 App.B. was corrected for dilution, dry weight, or method-defined ML.

0.0120

0.100

0.010

0.15

9.00E-3

0.50

EPA 200.7

SM 2340 B-2011

EPA 200.8

EPA 200.8

EPA 200.8

EPA 200.8

02/28/24

02/28/24

04/04/24

03/08/24

04/04/24

03/08/24

3/1/24 11:57

3/1/24 11:57

4/4/24 16:12

3/8/24 16:43

4/4/24 16:12

3/8/24 16:43 DMW

AMO

AMO

DMW

DMW

DMW

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Quality Control Report

Analyte Name	Method Blank	Units	% Recovery	Recovery Limits	RPD	RPD Limit	Analyzed	Analyst Initials	Qualifier
Wet Chemistry									
Batch: B240680 Blank (B240680-BLK1) COD	<7	ma/L					02/27/2024	МСВ	U
LCS (B240680-BS1) COD			100	90-110			02/27/2024	МСВ	
Duplicate (B240680-DUP1) COD	Source ID: AC00	0335-01			3.92	10	02/27/2024	MCB	
Batch: B240683 Blank (B240683-BLK1) Total Suspended Solids	<0.9	mg/L					02/27/2024	MEC	U
LCS (B240683-BS1) Total Suspended Solids			101	90-110			02/27/2024	MEC	
Duplicate (B240683-DUP1) Total Suspended Solids	Source ID: BB03	3630-02			8.03	20	02/27/2024	MEC	
Batch: B240684 Blank (B240684-BLK1) BOD5	<2	ma/l					03/03/2024	BAK	· U
LCS (B240684-BS1) BOD5	_		102	84.6-115.4			03/03/2024	BAK	
LCS (B240684-BS2) BOD5			109	84.6-115.4			03/03/2024	BAK	
Duplicate (B240684-DUP1) BOD5	Source ID: BB03	8630-03			3.10	30	03/03/2024	BAK	
Batch: B240696 Blank (B240696-BLK1) Total Dissolved Solids	<20	mg/L					02/29/2024	MEC	U
LCS (B240696-BS1) Total Dissolved Solids			99.4	90-110			02/29/2024	MEC	
Duplicate (B240696-DUP1) Total Dissolved Solids	Source ID: LS01	873-01			0.700	10	02/29/2024	MEC	

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Quality Control Report (Continued)

Analyte Name	Method Blank Units			% Recoverv	Recovery Limits	RPD	RPD Limit	Analyzed	Analyst Initials	Qualifier
Wet Chemistry (Contin	nued)			,						
Batch: B240698	lacaj									
Blank (B240698-BLK1) Turbidity		<0.3	NTU					02/28/2024	ASE	U
LCS (B240698-BS1) Turbidity				98.2	90-110			02/28/2024	ASE	
Duplicate (B240698-DUP1) Turbidity	Source II	D: AC00)337-04			3.45	25	02/28/2024	ASE	D
Batch: B240708 Blank (B240708-BLK1) Total Suspended Solids		<0.9	mg/L					02/28/2024	RKT	U
LCS (B240708-BS1) Total Suspended Solids				96.2	90-110			02/28/2024	RKT	
Duplicate (B240708-DUP1) Total Suspended Solids	Source II	D: BB03	8631-02			3.63	20	02/28/2024	RKT	
Duplicate (B240708-DUP2) Total Suspended Solids	Source II	D: BB03	8632-01			6.00	20	02/28/2024	RKT	
Batch: B240718 Blank (B240718-BLK1) Nitrate-Nitrite, as N	c	<0.025	mg/L					02/29/2024	LRF	U
Blank (B240718-BLK2) Nitrate-Nitrite, as N	<	<0.025	mg/L					02/29/2024	LRF	U
LCS (B240718-BS1) Nitrate-Nitrite, as N				104	90-110			02/29/2024	LRF	
LCS (B240718-BS2) Nitrate-Nitrite, as N				99.7	90-110			02/29/2024	LRF	
Duplicate (B240718-DUP1) Nitrate-Nitrite, as N	Source I	D: BB03	3631-02			NR	10	02/29/2024	LRF	
Duplicate (B240718-DUP2) Nitrate-Nitrite, as N	Source I	D: AC00	0336-01			0.514	10	02/29/2024	LRF	
Duplicate (B240718-DUP3) Nitrate-Nitrite, as N	Source I	D: LS01	875-02			0.470	10	02/29/2024	LRF	
Matrix Spike (B240718-MS1) Nitrate-Nitrite, as N	Source	ID: BB	03631-02	101	90-110			02/29/2024	LRF	
Matrix Spike (B240718-MS2) Nitrate-Nitrite, as N	Source	ID: AC	00336-01	99.9	90-110			02/29/2024	LRF	
Matrix Spike (B240718-MS3) Nitrate-Nitrite, as N	Source	ID: LS	01875-02	98.2	90-110			02/29/2024	LRF	
Matrix Spike Dup (B240718-I Nitrate-Nitrite, as N	NSD1)	Source	ID: BB03631	-02 106	90-110	4.55	10	02/29/2024	LRF	
Matrix Spike Dup (B240718-I Nitrate-Nitrite, as N	MSD2)	Source	ID: AC00336	-01 99.9	90-110	0.0278	10	02/29/2024	LRF	

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Quality Control Report

(Continued)

Analyte Name	Method Blank	Units	% Recovery	Recovery Limits	RPD	RPD Limit	Analyzed	Analyst Initials	Qualifier
Wet Chemistry (Continu	ued)								
Batch: B240718 (Continued	l)								
Matrix Spike Dup (B240718-M Nitrate-Nitrite, as N	SD3) Source I	D: LS01875	5-02 97.3	90-110	0.479	10	02/29/2024	LRF	
Batch: B240744									
Blank (B240744-BLK1) Ammonia, as N	<50	ug/L					03/01/2024	MEC	U
LCS (B240744-BS1) Ammonia, as N			97.7	90-110			03/01/2024	MEC	
Duplicate (B240744-DUP1) S Ammonia, as N	Source ID: LS01	873-02			1.34	10	03/01/2024	MEC	
Duplicate (B240744-DUP2) S Ammonia, as N	Source ID: BB03	629-03			1.56	10	03/01/2024	MEC	
Matrix Spike (B240744-MS1) Ammonia, as N	Source ID: LSC	1873-02	98.3	80-120			03/01/2024	MEC	
Matrix Spike (B240744-MS2) Ammonia, as N	Source ID: BB0)3629-03	104	80-120			03/01/2024	MEC	
Matrix Spike Dup (B240744-M Ammonia, as N	SD1) Source I	D: LS01873	3-02 100	80-120	1.38	10	03/01/2024	MEC	
Matrix Spike Dup (B240744-M Ammonia, as N	SD2) Source I	D: BB03629	9-03 106	80-120	1.01	10	03/01/2024	MEC	
Batch: B240796									
Blank (B240796-BLK1) Chloride	<0.015	mg/L					03/06/2024	ALN	U
Blank (B240796-BLK2) Chloride	<0.015	mg/L					03/07/2024	ALN	U
LCS (B240796-BS1) Chloride			95.7	90-110			03/06/2024	ALN	
LCS (B240796-BS2) Chloride			96.0	90-110			03/06/2024	ALN	
LCS (B240796-BS3) Chloride			95.4	90-110			03/07/2024	ALN	
Duplicate (B240796-DUP1) S Chloride	Source ID: RW0	0054-10			3.94	10	03/07/2024	ALN	D
Duplicate (B240796-DUP2) S Chloride	Source ID: RW0	0056-07			0.398	10	03/07/2024	ALN	D
Duplicate (B240796-DUP3) S Chloride	Source ID: AC00	337-01			0.672	10	03/06/2024	ALN	
Duplicate (B240796-DUP4) S Chloride	Source ID: LS01	873-01			0.319	10	03/07/2024	ALN	D
Matrix Spike (B240796-MS1) Chloride	Source ID: RW	00054-10	96.6	90-110			03/07/2024	ALN	D

The contents of this report apply to the sample(s) analyzed in accordance with the Chain of Custody document. No duplication of this report is allowed, except in its entirety

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Quality Control Report (Continued)

Analyte Name	Method Blank	Units	% Recovery	Recovery Limits	RPD	RPD Limit	Analyzed	Analyst Initials	Qualifier
Wet Chemistry (Contin	ued)								
Batch: B240796 (Continue Matrix Spike (B240796-MS2) Chloride	d) Source ID: RW	/00056-07	94.1	90-110		E.	03/07/2024	ALN	D
Matrix Spike (B240796-MS3) Chloride	Source ID: AC	00337-01	93.9	90-110			03/06/2024	ALN	
Matrix Spike (B240796-MS4) Chloride	Source ID: LS	01873-01	94.6	90-110			03/07/2024	ALN	D
Matrix Spike Dup (B240796-M Chloride	(ISD1) Source	ID: RW0005	4-10 97.2	90-110	0.377	10	03/07/2024	ALN	D
Matrix Spike Dup (B240796-M Chloride	(SD2) Source	ID: RW0005	6-07 94.2	90-110	0.0228	10	03/07/2024	ALN	D
Matrix Spike Dup (B240796-M Chloride	(SD3) Source	ID: AC00337	7-01 97.5	90-110	2.75	10	03/07/2024	ALN	
Matrix Spike Dup (B240796-M Chloride	(SD4) Source	ID: LS01873	95.4	90-110	0.336	10	03/07/2024	ALN	D
Batch: B240816 Blank (B240816-BLK1) TKN	<0.1	mg/L					03/08/2024	JAL	U
Blank (B240816-BLK2) TKN	<0.1	mg/L					03/08/2024	JAL	U
Blank (B240816-BLK3) TKN	<0.1	mg/L					03/08/2024	JAL	U
LCS (B240816-BS1) TKN			96.1	80-120			03/08/2024	JAL	
LCS (B240816-BS2) TKN			105	80-120			03/08/2024	JAL	
LCS (B240816-BS3) TKN			104	80-120			03/08/2024	JAL	
Duplicate (B240816-DUP1) TKN	Source ID: BB03	3631-02			1.33	20	03/08/2024	JAL	D
Duplicate (B240816-DUP2) TKN	Source ID: BB03	3638-01			1.21	20	03/08/2024	JAL	D
Duplicate (B240816-DUP3) TKN	Source ID: LS01	875-05			1.25	20	03/08/2024	JAL	D
Matrix Spike (B240816-MS1) TKN	Source ID: BB	03631-02	106	80-120			03/08/2024	JAL	D
Matrix Spike (B240816-MS2) TKN	Source ID: BB	03638-01	107	80-120			03/08/2024	JAL	D
Matrix Spike (B240816-MS3) TKN	Source ID: LS	01875-05	108	80-120			03/08/2024	JAL	D

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Quality Control Report

(Continued)

Analyte Name	Method Blank	Units	% Recovery	Recovery Limits	RPD	RPD Limit	Analyzed	Analyst Initials	Qualifier
Wet Chemistry (Contin	ued)								
Batch: B240816 (Continued	d)								
Matrix Spike (B240816-MS4) TKN	Source ID: RW	00055-01	107	80-120			03/08/2024	JAL	D
Matrix Spike (B240816-MS5) TKN	Source ID: RW	00055-03	105	80-120			03/08/2024	JAL	D
Matrix Spike (B240816-MS6) TKN	Source ID: RW	00055-04	103	80-120		1112	03/08/2024	JAL	D
Matrix Spike (B240816-MS7) TKN	Source ID: RW	00055-06	102	80-120			03/08/2024	JAL	D
Matrix Spike Dup (B240816-M TKN	SD1) Source I	D: BB03631	-02 114	80-120	2.56	20	03/08/2024	JAL	D
Matrix Spike Dup (B240816-M TKN	SD2) Source I	D: BB03638	-01 115	80-120	2.66	20	03/08/2024	JAL	D
Matrix Spike Dup (B240816-M TKN	SD3) Source I	D: LS01875	-05 114	80-120	2.43	20	03/08/2024	JAL	D
Dissolved Wet Chemis	try								
Batch: B240685									
Blank (B240685-BLK1) Orthophosphate, as P	<0.003	mg/L					02/27/2024	RKT	U
LCS (B240685-BS1) Orthophosphate, as P			96.3	90-110			02/27/2024	RKT	
Duplicate (B240685-DUP1) Orthophosphate, as P	Source ID: LS01	873-02			0.0687	10	02/27/2024	RKT	D
Duplicate (B240685-DUP3) Orthophosphate, as P	Source ID: RW0	0054-07RE1			0.433	10	02/27/2024	RKT	D
Matrix Spike (B240685-MS1) Orthophosphate, as P	Source ID: LSC)1873-02	98.4	90-110			02/27/2024	RKT	D
Matrix Spike (B240685-MS3) Orthophosphate, as P	Source ID: RW	/00054-07RE	E1 101	90-110			02/27/2024	RKT	D
Matrix Spike Dup (B240685-M Orthophosphate, as P	ISD1) Source I	D: LS01873	-02 98.5	90-110	0.0349	10	02/27/2024	RKT	D
Matrix Spike Dup (B240685-M Orthophosphate, as P	ISD3) Source I	D: RW0005	4-07RE1 101	90-110	0.0489	10	02/27/2024	RKT	D

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Quality Control Report

(Continued)

	Method		%	Recovery		RPD		Analyst	
Analyte Name	Blank	Units	Recovery	Limits	RPD	Limit	Analyzed	Initials	Qualifier
Total Metals									
Batch: B240695									
Blank (B240695-BLK1)									
Calcium	<0.04	mg/L					03/01/2024	AMO	U
Magnesium	<80	ug/L					03/01/2024	AMO	U
Phosphorus as P	<0.012	mg/L					03/01/2024	AMO	U
LCS (B240695-BS1)									
Calcium			102	85-115			03/01/2024	AMO	
Magnesium			101	85-115			03/01/2024	AMO	
Phosphorus as P			108	85-115			03/01/2024	AIVIO	
Duplicate (B240695-DUP1)	Source ID: AC00)337-02							
Calcium					0.727	20	03/01/2024	AMO	
Magnesium					0.793	20	03/01/2024	AMO	
Phosphorus as P					0.100	20	03/01/2024	AWO	
Matrix Spike (B240695-MS1)	Source ID: AC	00337-02							
Calcium			102	70-130			03/01/2024	AMO	
Magnesium Dhaanhaana D			99.6	70-130			03/01/2024	AMO	
Phosphorus as P			112	70-130			03/01/2024	AIVIO	
Matrix Spike Dup (B240695-N	ISD1) Source	ID: AC0033	37-02				00/04/0004	4140	
Calcium			101	70-130	0.172	20	03/01/2024	AMO	
Magnesium Phosphorus as P			99.4	70-130	0.160	20	03/01/2024	AMO	
			115	70-150	0.221	20	00/01/2024	7400	
Batch: B240750									
Blank (B240750-BLK1)								D 1011	
Arsenic	< 0.070	ug/L					03/03/2024		0
	<0.010	ug/L					03/03/2024		บ บ
	<0.010	ug/L					00/00/2024	DIVIV	
LCS (B240750-BS1)			400	05 445			00/00/0004		
Arsenic			102	85-115			03/03/2024		
Cadmium			105	85-115			03/03/2024	DMW	
Leau			107	00-110			00/00/2024	Children	
Duplicate (B240750-DUP1)	Source ID: AC00)336-01			1.00	20	02/02/2024		
Arsenic					1.30	20	03/03/2024		
Lead					9.29	20	03/03/2024	DMW	
					0.400	20	00,00,2021	Diiitt	
Matrix Spike (B240750-MS1)	Source ID: AC	00336-01	09.0	70 420			03/03/2024		
Arsenic			90.2	70-130			03/03/2024		
Lead			96.4	70-130			03/03/2024	DMW	
		0.0000	00.4						
Matrix Spike Dup (B240750-N	NSD1) Source	ID: AC003	36-01	70,120	0 110	20	03/03/2024		
Cadmium			90.3 103	70-130	3.09	20	03/03/2024	DMW	
Lead			97.5	70-130	0.693	20	03/03/2024	DMW	

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Quality Control Report (Continued)

Analyte Name	Method Blank	Units	% Recovery	Recovery Limits	RPD	RPD Limit	Analyzed	Analyst Initials	Qualifier
Total Metals (Continue	ed)								· · · -
Batch: B240817 Blank (B240817-BLK1)	-0.04								
	<0.01	ug/L					03/08/2024	SAS	U
LCS (B240817-BS1) Mercury			102	85-115			03/08/2024	SAS	
Duplicate (B240817-DUP1) Mercury	Source ID: AC00)336-01			1.32	20	03/08/2024	SAS	
Duplicate (B240817-DUP2) Mercury	Source ID: BB03	8624-03			NR	20	03/08/2024	SAS	
Matrix Spike (B240817-MS1) Mercury	Source ID: AC	00336-01	99.4	70-130			03/08/2024	SAS	
Matrix Spike (B240817-MS2) Mercury	Source ID: BB	03624-03	106	70-130			03/08/2024	SAS	
Matrix Spike Dup (B240817-M Mercury	(SD1) Source	ID: AC00336	-01 98.6	70-130	0.699	20	03/08/2024	SAS	
Matrix Spike Dup (B240817-M Mercury	(SD2) Source	ID: BB03624	-03 107	70-130	0.600	20	03/08/2024	SAS	

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Quality Control Report

Analyte Name	Method Blank	Units	% Recovery	Recovery Limits	RPD	RPD Limit	Analyzed	Analyst Initials	Qualifier
Dissolved Metals									
Batch: B240802									
Blank (B240802-BLK1)									
Copper	<0.15	ug/L					03/08/2024	DMW	U
Zinc	<0.50	ug/L					03/08/2024	DMW	U
LCS (B240802-BS1)									
Copper			91.8	85-115			03/08/2024	DMW	
Zinc			93.3	85-115			03/08/2024	DMW	
Duplicate (B240802-DUP1) Se	ource ID: AC00	337-03							
Copper					1.42	10	03/08/2024	DMW	
Zinc					1.17	10	03/08/2024	DMW	
Matrix Spike (B240802-MS1)	Source ID: AC	00337-03							
Copper			90.6	70-130			03/08/2024	DMW	
Zinc			89.1	70-130			03/08/2024	DMW	
Matrix Spike Dup (B240802-MS	D1) Source	D: AC00337	7-03						
Copper			89.4	70-130	0.854	10	03/08/2024	DMW	
Zinc			86.0	70-130	1.20	10	03/08/2024	DMW	
Batch: B241178									
Blank (B241178-BLK1)									
Cadmium	<0.010	ug/L					04/04/2024	DMW	U
Lead	<0.0090	ug/L					04/04/2024	DMW	U
LCS (B241178-BS1)									
Cadmium			99.9	85-115			04/04/2024	DMW	
Lead			99.4	85-115			04/04/2024	DMW	
Duplicate (B241178-DUP1) Se	ource ID: AC00	340-01							
Cadmium					NR	10	04/04/2024	DMW	U
Lead					2.01	10	04/04/2024	DMW	
Matrix Spike (B241178-MS1)	Source ID: AC	00340-01							
Cadmium			102	70-130			04/04/2024	DMW	
Lead			98.4	70-130			04/04/2024	DMW	
Matrix Spike Dup (B241178-MS	D1) Source	D: AC00340	0-01						
Cadmium			102	70-130	0.490	10	04/04/2024	DMW	
Lead			98.3	70-130	0.146	10	04/04/2024	DMW	

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Notes and Definitions

ltem	Definition
D	Data reported from a dilution
U	Analyte included in the analysis, but not detected

Method Reference Acronyms

Colilert	Colilert, IDEXX Laboratories, Inc.
EPA	Manual of Methods for Chemical Analysis of Water and Wastes, USEPA
GS	USGS Techniques of Water-Resources Investigations
HH	Hach Spectrophotometer Procedures Manual
SM	Standard Methods for the Examination of Water and Wastewater
SW	Test methods for Evaluating Solid Waste, SW-846

for JFK

Janet Finegan-Kelly Water Quality Laboratory Manager

Stephen Quintero or Azubike Emenari QA/QC Coordinator

	Ada Co	ounty Hig	ghway I	District					Matrix	Tv	De la							n - Sinana	14	÷ ک			¢
	Aun. Steven Turner 3775 Adams Street Garden City, Idaho 83714–6418 Tel. (208) 387–6269 Fax (208) 387–6391 Purchase Order: 63065628 Project: Stormwater-PI Sampler(s): Kuisten (Jushalm				Shalm		Ø				10.B	. 00		1.2		e - EPA 305.1 b - EPA 200.8	o, Zn - EPA 200.8	A 246.2 × 245.1 ×	(Cottlert (M(CVIds 5 674 324))	A 200.7 1/2 K	A 353.2	NH3 - D	
	Lab#	Begin Date	End Date	Begin Time	End Time	Sample Identifi	ication	Sampler Initial	Water	Grab	Composite	BOD ₅ - SM 52	COD - Hach 80	TDS - SM 2540 TDS - SM 2540	TKN - EPA 35	TP - EPA 200.7	Urtinopriospinate Total As, Cd, P	Diss. Cd Cu, Pł	Total Hg - EP/	E. Goli - IDEX) Turhidity - EDA	Hardness - EP	NO ₃ +NO ₂ - EP	Totol Contrine
V	Ac00 337-01	zlulzy	2/24/24	0905	1534	240226-03-WC	4.8.0	ST	X		X	Ý	× *	. X	X	\star \star	. ×	×.``	××	(X	×	**	1
	-02	2/26/24	2/24/24	0923	1908	240226-11-WC	646 3570	ST	X		×	X	XX	X	X	XX	X	×	xx	κ χ	×	××	- 2
	-03	2/25/24	2/24/24	12238	1601	240226-12-WC	3.4°C \$ 2.2°C	ST	X		X	x	γX	. 7	X	XX	×	X	\times ,	K X	X	XX	2
5	J -04	2/26/24	2/20/24	0857	iloClo	2402210-14-WC	7-4764 567	ST	X	•	X	X	XX	×	×	ĸΧ	×	X	××	K	×	<u>x x</u>	2
	Relinquis	shed by (s	ign)	Date	& Time	Received	by (sign)				Co	omn	nents	s/Sp	ecia	l Ins	truc	tion	IS:				
Ž	kister	Juisto	2	2/210/2	4 2055	1 Rolls	2-27-29	IF NO	low Ja lx + D	olum	e f Cd	τ.γ .,Cι	24), P	022 5. Z	26 - 27.0	+ 0	· we	C, 7 074	plea	ade ha	pri te	onti	ZQ
	coc_wql-pi									1	ţ	ŧ/	tc (0	33	7			19	-298	-wi	<u>^24</u> {ス〔	7

ACHD SAMPLE FILTRATION, SPLITTING, AND COMPOSITING FOR METALS

PAGE 1 OF 2

Sample	Split/Filter Info	Filter Used	Bottle/Lid Lots	Bottles Split		Comments
Lims#: AC000337-01 Location: Sample Date: 2-26-24 Sample ID: ACST1C #1	Split 7 Date: 2-26-24 \bigcirc Start Split: <u>\subset 726</u> Start Filter: \bigcirc 726 Comp Time: $\boxed{N/A}$ Analyst: \boxed{A}	Filter: ⊠Voss ⊠0.45µm high-cap. ⊠5.0µm ⊠10.0µm	Coll Jug: <u>c c 000 51-25</u> Comp Jug: <u>N / A</u> SS Tubing: CC00051-28 SS Helper: SSA1 Stir Bar: CC00040-46 Connector: CC00044-99 (x2)	⊠Teflon Total ⊠Teflon Diss (F) ⊠Hg CVAA ⊠BOD ⊠TSS ⊠TDS ⊠COD		Prioritize NOX, Diss. metals + DRP per ACHD.
Lims#: AC000 337-02 Location:(Sample Date: 2-26-24 Sample ID: ACST1C #2	Split 7 Date: 2-26-24 Start Split: <u>0744</u> Start Filter: <u>0744</u> Comp Time: <u>0739</u> Analyst: <u>Arroloc</u> T	Filter: ⊠Voss ⊠0.45µm high-cap. ⊠5.0µm ⊠10.0µm	Coll Jug: <u>CCONCUR 77</u> Comp Jug: <u>CCONCUR 77</u> SS Tubing: CC00051-28 SS Helper: SSA4 Stir Bar: CC00040-AL 31-41 Connector: CC00044-99/48-69	 ☑ Teflon Total ☑ Teflon Diss (F) ☑ Hg CVAA ☑ BOD ☑ TSS ☑ TDS ☑ COD 		2 jugs camposited into 40L
Lims#: AC000337-03 Location: -12 Sample Date: 2-26-24 Sample ID: ACST1C #3	Split Date: 2-26-24 5 Start Split: 0823 Start Filter: 0823 Comp Time: 0819 Analyst: AMO/DKT	Filter: ⊠Voss ⊠0.45µm high-cap. ⊠5.0µm ⊠10.0µm	Coll Jug: <u>CCCCCC51-25</u> Comp Jug: <u>CCCC051-25</u> SS Tubing: CC00051-28 SS Helper: SSA5 Stir Bar: CC00051-26 Connector: CC00044-99/48-69	 ☑ Teflon Total ☑ Teflon Diss (F) ☑ Hg CVAA ☑ BOD ☑ TSS ☑ TDS ☑ COD 		2 jugs composited into 162
Lims#: AC000 3.37 -04 Location:14 Sample Date: 2-26-24 Sample ID: ACST1C #4	Split Date: 2-26-24 Start Split: <u>0803</u> Start Filter: <u>0903</u> Comp Time: <u>07-59</u> Analyst: <u>AM0/DKT</u>	Filter: ⊠Voss ⊠0.45µm high-cap. ⊠5.0µm ⊠10.0µm	Coll Jug: <u>CCC0048-75</u> Comp Jug: <u>CC0051-3</u> 7 SS Tubing: CC00051-28 SS Helper: SSA7 Stir Bar: CC00051-28 Connector: CC00048-69 (x2)	 ☑ Teflon Total ☑ Teflon Diss (F) ☑ Hg CVAA ☑ BOD ☑ TSS ☑ TDS ☑ COD 		2 jugs composited into 400
Lims#: AC000336-01 Location: -2.06 Sample Date: 2-26-24 Sample ID: ACST1C #5	Split 7 Date: 2-26-24 (1+) Start Split: <u>0833</u> Start Filter: <u>0833</u> Comp Time: <u>0834</u> Analyst: <u>Arvo / 0K</u> T	Filter: ⊠Voss ⊠0.45µm high-cap. ⊠5.0µm ⊠10.0µm	Coll Jug: CCCCCS1-38 Comp Jug: CCCCCS1-38 SS Tubing: CC00051-28 SS Helper: SSA8 Stir Bar: CC00051-36 Connector: CC00048-69 (x2)	 ☑ Teflon Total ☑ Teflon Diss (F) ☑ Hg CVAA ☑ BOD ☑ TSS ☑ TDS ☑ COD 		2 jugs composited into 166 used 2nd set of VOSS Filters (+3), connector cort #15: ccorr 51-27 (x2)

* ASE and SMC observed splitting

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Samples in this Report

Lab ID	Sample	Sample Description	Matrix Qualif	iers	Date Sampled	Date Received
AC00336-01	ACST1C	240226-206-WC	Water		02/26/2024	02/27/2024
Comme	nts:					

Container temps: #1 - 7.0 C, #2 - 8.1 C

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Analysis Report

Location:	ACST	1C				Location Description:	240226-2	06-WC		
Date/Time Collected	d: 02/26/2	2024 10:04	4 - 02/26/	2024 16:20)					
Lab Number:	AC003	36-01				Sample Collector:	S.T			
Sample Type:	Compo	osite				Sample Matrix:	Water			
Analyte Name	Batch	Result	Units	Adjusted MDL *	Method MDL	Analysis Method Reference	Prepared	Analyzed	Analyst Initials	Qualifier
Wet Chemistry							· · · · · · · · · · · · · · · · · · ·			
Ammonia, as N	B240744	0.522	mg/L	0.0500	0.0500	SM 4500-NH3 D-2011	03/01/24	3/1/24 11:42	MEC	
BOD5	B240684	17.7	mg/L	2.00	2.00	SM 5210 B-2016	02/27/24	3/3/24 11:26	BAK	
Chloride	B240796	9.39	mg/L	0.0150	0.0150	EPA 300.0, Rev. 2.1	03/06/24	3/6/24 21:58	ALN	
COD	B240680	122	mg/L	7.00	7.00	HH 8000, Standard Method 5220 D	02/27/24	2/27/24 11:18	MCB	
Nitrate-Nitrite, as N	B240718	0.278	mg/L	0.0250	0.0250	EPA 353.2, Rev. 2.0 (1993)	02/29/24	2/29/24 12:13	LRF	
TKN	B240816	2.43	mg/L	0.100	0,100	EPA 351.2, 10-107-06-2-M (Equivalent)	03/07/24	3/8/24 9:44	JAL	
Total Dissolved Solids	B240696	85.8	mg/L	20.0	20.0	SM 2540 C-2015	02/28/24	2/29/24 13:58	MEC	
Total Suspended Solids	B240683	75.8	mg/L	0.900	0.900	SM 2540 D-2015	02/27/24	2/27/24 10:39	MEC	
Turbidity	B240698	75.5	NTU	1.2	0.3	EPA 180.1, Rev. 2.0 (1993)	02/28/24	2/28/24 9:41	ASE	D
Dissolved Wet Ch	emistry									
Orthophosphate, as P	B240685	0.289	mg/L	3.00E-3	3.00E-3	EPA 365.1, Rev. 2.0 (1993)	02/27/24	2/27/24 10:05	RKT	
Total Metals										
Mercury	B240817	0.0183	ug/L	0.0100	0.0100	EPA 245.1	03/07/24	3/8/24 7:58	SAS	
Arsenic	B240750	2.2	ug/L	0.070	0.070	EPA 200.8	03/02/24	3/3/24 13:40	DMW	
Cadmium	B240750	0.087	ug/L	0.010	0.010	EPA 200.8	03/02/24	3/3/24 13:40	DMW	
Calcium	B240695	5.43	mg/L	0.0400	0.0400	EPA 200.7	02/28/24	3/1/24 11:13	AMO	
Lead	B240750	6.3	ug/L	0.010	0,010	EPA 200.8	03/02/24	3/3/24 13:40	DMW	
Magnesium	B240695	2110	ug/L	80.0	80.0	EPA 200.7	02/28/24	3/1/24 11:13	AMO	
Phosphorus as P	B240695	0.570	mg/L	0.0120	0.0120	EPA 200.7	02/28/24	3/1/24 11:13	AMO	
Hardness	B240695	22.2	mg/L	0.100	0.100	SM 2340 B-2011	02/28/24	3/1/24 11:13	AMO	
Dissolved Metals								· · · · · · · · · · · · · · · · · · ·		
Cadmium	B241178	0.016	ug/L	0.010	0.010	EPA 200.8	04/04/24	4/4/24 16:02	DMW	
Copper	B240802	5.0	ug/L	0.15	0.15	EPA 200.8	03/08/24	3/8/24 16:25	DMW	
Lead	B241178	0.26	ug/L	9.00E-3	9.00E-3	EPA 200.8	04/04/24	4/4/24 16:02	DMW	
Zinc	B240802	20.2	ug/L	0.50	0.50	EPA 200.8	03/08/24	3/8/24 16:25	DMW	

* The reported adjusted "MDL" is sample-specific. The analysis MDL as defined by 40 CFR pt 136 App.B. was corrected for dilution, dry weight, or method-defined ML.

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Quality Control Report

Analyte Name	Method Blank	Units	% Recovery	Recovery Limits	RPD	RPD Limit	Analyzed	Analyst Initials	Qualifier
Wet Chemistry									
Batch: B240680									
Blank (B240680-BLK1) COD	<7	mg/L					02/27/2024	MCB	U
LCS (B240680-BS1) COD			100	90-110			02/27/2024	MCB	
Duplicate (B240680-DUP1) COD	Source ID: AC00	335-01			3.92	10	02/27/2024	MCB	
Batch: B240683									
Blank (B240683-BLK1) Total Suspended Solids	<0.9	mg/L					02/27/2024	MEC	U
LCS (B240683-BS1) Total Suspended Solids			101	90-110			02/27/2024	MEC	
Duplicate (B240683-DUP1) Total Suspended Solids	Source ID: BB03	630-02			8.03	20	02/27/2024	MEC	
Batch: B240684									
Blank (B240684-BLK1) BOD5	<2	mg/L					03/03/2024	BAK	U
LCS (B240684-BS1) BOD5			102	84.6-115.4			03/03/2024	BAK	
LCS (B240684-BS2) BOD5			109	84.6-115.4			03/03/2024	BAK	
Duplicate (B240684-DUP1)	Source ID: BB03	630-03							
BOD5					3.10	30	03/03/2024	BAK	
Batch: B240696									
Blank (B240696-BLK1) Total Dissolved Solids	<20	mg/L					02/29/2024	MEC	U
LCS (B240696-BS1) Total Dissolved Solids			99.4	90-110			02/29/2024	MEC	
Duplicate (B240696-DUP1) Total Dissolved Solids	Source ID: LS01	873-01			0.700	10	02/29/2024	MEC	

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Quality Control Report (Continued)

Analyte Name	Method % Recovery RPD Blank Units Recovery Limits RPD Limit				RPD Limit	Analyzed	Analyst Initials	Qualifier	
Wet Chemistry (Contin	nued)								
Batch: B240698 Blank (B240698-BLK1) Turbidity	<0.3	NTU					02/28/2024		
LCS (B240698-BS1) Turbidity	-0.0		98.2	90-110			02/28/2024	ASE	
Duplicate (B240698-DUP1) Turbidity	Source ID: AC00)337-04			3.45	25	02/28/2024	ASE	D
Batch: B240718 Blank (B240718-BLK1) Nitrate-Nitrite, as N	<0.025	mg/L					02/29/2024	LRF	U
Blank (B240718-BLK2) Nitrate-Nitrite, as N	<0.025	mg/L					02/29/2024	LRF	U
LCS (B240718-BS1) Nitrate-Nitrite, as N			104	90-110			02/29/2024	LRF	
LCS (B240718-BS2) Nitrate-Nitrite, as N			99.7	90-110			02/29/2024	LRF	
Duplicate (B240718-DUP1) Nitrate-Nitrite, as N	Source ID: BB03	631-02			NR	10	02/29/2024	LRF	
Duplicate (B240718-DUP2) Nitrate-Nitrite, as N	Source ID: AC00)336-01			0.514	10	02/29/2024	LRF	
Duplicate (B240718-DUP3) Nitrate-Nitrite, as N	Source ID: LS01	875-02			0.470	10	02/29/2024	LRF	
Matrix Spike (B240718-MS1) Nitrate-Nitrite, as N	Source ID: BB	03631-02	101	90-110			02/29/2024	LRF	
Matrix Spike (B240718-MS2) Nitrate-Nitrite, as N	Source ID: AC	00336-01	99.9	90-110			02/29/2024	LRF	
Matrix Spike (B240718-MS3) Nitrate-Nitrite, as N	Source ID: LS0	01875-02	98.2	90-110			02/29/2024	LRF	
Matrix Spike Dup (B240718-I Nitrate-Nitrite, as N	WSD1) Source	ID: BB0363	1-02 106	90-110	4.55	10	02/29/2024	LRF	
Matrix Spike Dup (B240718-I Nitrate-Nitrite, as N	MSD2) Source	ID: AC0033	6-01 99.9	90-110	0.0278	10	02/29/2024	LRF	
Matrix Spike Dup (B240718-I Nitrate-Nitrite, as N	MSD3) Source	ID: LS01875	5-02 97.3	90-110	0.479	10	02/29/2024	LRF	

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Quality Control Report (Continued)

Analyte Name	Method Blank	Units	% Recovery	Recovery Limits	RPD	RPD Limit	Analyzed	Analyst Initials	Qualifier
Wet Chemistry (Contir	nued)								
Batch: B240744 Blank (B240744-BLK1) Ammonia, as N	<50	ug/L					03/01/2024	MEC	U
LCS (B240744-BS1) Ammonia, as N			97.7	90-110			03/01/2024	MEC	
Duplicate (B240744-DUP1) Ammonia, as N	Source ID: LS01	873-02			1.34	10	03/01/2024	MEC	
Duplicate (B240744-DUP2) Ammonia, as N	Source ID: BB03	3629-03			1.56	10	03/01/2024	MEC	
Matrix Spike (B240744-MS1) Ammonia, as N	Source ID: LS	01873-02	98.3	80-120			03/01/2024	MEC	
Matrix Spike (B240744-MS2) Ammonia, as N	Source ID: BB	03629-03	104	80-120			03/01/2024	MEC	
Matrix Spike Dup (B240744-M Ammonia, as N	WSD1) Source	ID: LS0187	3-02 100	80-120	1.38	10	03/01/2024	MEC	
Matrix Spike Dup (B240744-M Ammonia, as N	MSD2) Source	ID: BB0362	9-03 106	80-120	1.01	10	03/01/2024	MEC	
Batch: B240796 Blank (B240796-BLK1) Chloride	<0.015	mg/L					03/06/2024	ALN	U
Blank (B240796-BLK2) Chloride	<0.015	mg/L					03/07/2024	ALN	U
LCS (B240796-BS1) Chloride			95.7	90-110			03/06/2024	ALN	
LCS (B240796-BS2) Chloride			96.0	90-110			03/06/2024	ALN	
LCS (B240796-BS3) Chloride			95.4	90-110			03/07/2024	ALN	
Duplicate (B240796-DUP1) Chloride	Source ID: RW0	00054-10			3.94	10	03/07/2024	ALN	D
Duplicate (B240796-DUP2) Chloride	Source ID: RW0	0056-07			0.398	10	03/07/2024	ALN	D
Duplicate (B240796-DUP3) Chloride	Source ID: AC0	0337-01			0.672	10	03/06/2024	ALN	
Duplicate (B240796-DUP4) Chloride	Source ID: LS0	1873-01			0.319	10	03/07/2024	ALN	D
Matrix Spike (B240796-MS1) Chloride	Source ID: RV	V00054-10	96.6	90-110			03/07/2024	ALN	D
Matrix Spike (B240796-MS2) Chloride	Source ID: RV	V00056-07	94.1	90-110		2	03/07/2024	ALN	D

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Quality Control Report

(Continued)

Analyte Name		Method Blank	Units	% Recovery	Recovery Limits	RPD	RPD Limit	Analyzed	Analyst Initials	Qualifier
Wet Chemistry (Contin	ued)									
Batch: B240796 (Continue Matrix Spike (B240796-MS3) Chloride	d) Sou	rce ID: AC	00337-01	93.9	90-110			03/06/2024	ALN	
Matrix Spike (B240796-MS4) Chloride	Sou	rce ID: LS	01873-01	94.6	90-110			03/07/2024	ALN	D
Matrix Spike Dup (B240796-M Chloride	(ISD1)	Source	ID: RW0005	4-10 97.2	90-110	0.377	10	03/07/2024	ALN	D
Matrix Spike Dup (B240796-M Chloride	ISD2)	Source	ID: RW0005	6-07 94.2	90-110	0.0228	10	03/07/2024	ALN	D
Matrix Spike Dup (B240796-N Chloride	(ISD3)	Source	ID: AC00337	7-01 97.5	90-110	2.75	10	03/07/2024	ALN	
Matrix Spike Dup (B240796-N Chloride	(ISD4)	Source	ID: LS01873	-01 95.4	90-110	0.336	10	03/07/2024	ALN	D
Batch: B240816 Blank (B240816-BLK1) TKN		<0.1	mg/L					03/08/2024	JAL	U
Blank (B240816-BLK2) TKN		<0.1	mg/L					03/08/2024	JAL	U
Blank (B240816-BLK3) TKN		<0.1	mg/L					03/08/2024	JAL	U
LCS (B240816-BS1) TKN				96.1	80-120			03/08/2024	JAL	
LCS (B240816-BS2) TKN				105	80-120			03/08/2024	JAL	
LCS (B240816-BS3) TKN				104	80-120			03/08/2024	JAL	
Duplicate (B240816-DUP1) TKN	Source	e ID: BB03	631-02			1.33	20	03/08/2024	JAL	D
Duplicate (B240816-DUP2) TKN	Source	e ID: BB03	638-01			1.21	20	03/08/2024	JAL	D
Duplicate (B240816-DUP3) TKN	Source	e ID: LS01	875-05			1.25	20	03/08/2024	JAL	D
Matrix Spike (B240816-MS1) TKN	Sou	rce ID: BB	03631-02	106	80-120			03/08/2024	JAL	D
Matrix Spike (B240816-MS2) TKN	Sou	rce ID: BB	03638-01	107	80-120			03/08/2024	JAL	D
Matrix Spike (B240816-MS3) TKN	Sou	rce ID: LS()1875-05	108	80-120			03/08/2024	JAL	D
Matrix Spike (B240816-MS4) TKN	Sou	rce ID: RW	/00055-01	107	80-120			03/08/2024	JAL	D

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Quality Control Report (Continued)

Analyte Name	Method Blank	Units	% Recovery	Recovery Limits	RPD	RPD Limit	Analyzed	Analyst Initials	Qualifier
Wet Chemistry (Contin	ued)								
Batch: B240816 (Continued)								
Matrix Spike (B240816-MS5) TKN	Source ID: RW	00055-03	105	80-120			03/08/2024	JAL	D
Matrix Spike (B240816-MS6) TKN	Source ID: RW	00055-04	103	80-120			03/08/2024	JAL	D
Matrix Spike (B240816-MS7) TKN	Source ID: RW	00055-06	102	80-120			03/08/2024	JAL	D
Matrix Spike Dup (B240816-M TKN	SD1) Source I	D: BB03631	-02 114	80-120	2.56	20	03/08/2024	JAL	D
Matrix Spike Dup (B240816-M TKN	SD2) Source I	D: BB03638	3-01 115	80-120	2.66	20	03/08/2024	JAL	D
Matrix Spike Dup (B240816-M TKN	SD3) Source I	D: LS01875	-05 114	80-120	2.43	20	03/08/2024	JAL	D
Dissolved Wet Chemist	try								
Batch: B240685	•								
Blank (B240685-BLK1) Orthophosphate, as P	<0.003	mg/L					02/27/2024	RKT	U
LCS (B240685-BS1) Orthophosphate, as P			96.3	90-110			02/27/2024	RKT	
Duplicate (B240685-DUP1) Orthophosphate, as P	Source ID: LS01	873-02			0.0687	10	02/27/2024	RKT	D
Duplicate (B240685-DUP3) Orthophosphate, as P	Source ID: RW0	0054-07RE1	1		0.433	10	02/27/2024	RKT	D
Matrix Spike (B240685-MS1) Orthophosphate, as P	Source ID: LS0)1873-02	98.4	90-110			02/27/2024	RKT	D
Matrix Spike (B240685-MS3) Orthophosphate, as P	Source ID: RW	/00054-07R	E1 101	90-110			02/27/2024	RKT	D
Matrix Spike Dup (B240685-M Orthophosphate, as P	SD1) Source	ID: LS01873	3-02 98.5	90-110	0.0349	10	02/27/2024	RKŤ	D
Matrix Spike Dup (B240685-M Orthophosphate, as P	SD3) Source	ID: RW0005	64-07RE1 101	90-110	0.0489	10	02/27/2024	RKT	D

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Quality Control Report

(Continued)

Analyte Name	Method Blank	Units	% Recovery	Recovery Limits	RPD	RPD Limit	Analyzed	Analyst Initials	Qualifier
Total Metals							······································		1
Batch: B240695 Blank (B240695-BLK1)									
Calcium	<0.04	mg/L					03/01/2024	AMO	U
Magnesium	<80	ug/L					03/01/2024	AMO	U
Phosphorus as P	<0.012	mg/L					03/01/2024	AMO	U
LCS (B240695-BS1)							52-11		
Calcium			102	85-115			03/01/2024	AMO	
Magnesium			101	85-115			03/01/2024	AMO	
Phosphorus as P			108	85-115			03/01/2024	AMO	
Duplicate (B240695-DUP1)	Source ID: AC00	337-02							
Calcium					0.727	20	03/01/2024	AMO	
Magnesium					0,793	20	03/01/2024	AMO	
Phosphorus as P					0,100	20	03/01/2024	AMO	
Matrix Spike (B240695-MS1)	Source ID: AC	00337-02							
Calcium			102	70-130			03/01/2024	AMO	
Magnesium			99.6	70-130			03/01/2024	AMO	
Phosphorus as P			112	70-130			03/01/2024	AMO	
Matrix Spike Dup (B240695-M	(ISD1) Source I	D: AC00337	'-02						
Calcium			101	70-130	0.172	20	03/01/2024	AMO	
Magnesium			99.4	70-130	0.180	20	03/01/2024	AMO	
Phosphorus as P			113	70-130	0.221	20	03/01/2024	AMO	
Batch: B240750									
Blank (B240750-BLK1)									
Arsenic	<0.070	ug/L					03/03/2024	DMW	U
Cadmium	<0.010	ug/L					03/03/2024	DMW	U
Lead	<0.010	ug/L					03/03/2024	DMW	U
LCS (B240750-BS1)									
Arsenic			102	85-115			03/03/2024	DMW	
Cadmium			105	85-115			03/03/2024	DMW	
Lead			107	85-115			03/03/2024	DMW	
Duplicate (B240750-DUP1) Arsenic	Source ID: AC00	336-01			1 36	20	03/03/2024		
Cadmium					9.29	20	03/03/2024		
Lead					0.499	20	03/03/2024	DMW	
Matrix Spike (D240750 MC4)		00000 04					00/00/2021	Billit	
Arsenic	Source ID: ACI	10336-01	08.2	70 130			02/02/2024	DMMA	
Cadmium			100	70-130			03/03/2024		
Lead			96.4	70-130			03/03/2024	DMM	
Matrix Spike Due (D040750 B	(CD4) Course 1	D. ACO0000					50,00,2024	CITAN	
Arsenic	Source I	D. AC00336	08.3	70-130	0 110	20	02/02/2024	DAMA	
Cadmium			103	70-130	3.09	20	03/03/2024		
Lead			97.5	70-130	0.693	20	03/03/2024	DM\/	
					18-54		30.00.001		

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Quality Control Report (Continued)

Analyte Name	Method Blank	Units	% Recovery	Recovery Limits	RPD	RPD Limit	Analyzed	Analyst Initials	Qualifier
Total Metals (Continue	d)								
Batch: B240817	-								
Blank (B240817-BLK1) Mercury	<0.01	ug/L					03/08/2024	SAS	U
LCS (B240817-BS1) Mercury			102	85-115			03/08/2024	SAS	
Duplicate (B240817-DUP1) Mercury	Source ID: AC0	0336-01			1.32	20	03/08/2024	SAS	
Duplicate (B240817-DUP2) Mercury	Source ID: BB0	3624-03			NR	20	03/08/2024	SAS	
Matrix Spike (B240817-MS1) Mercury	Source ID: AC	00336-01	99.4	70-130			03/08/2024	SAS	
Matrix Spike (B240817-MS2) Mercury	Source ID: BE	803624-03	106	70-130			03/08/2024	SAS	
Matrix Spike Dup (B240817-M Mercury	(ISD1) Source	ID: AC0033	6-01 98.6	70-130	0.699	20	03/08/2024	SAS	
Matrix Spike Dup (B240817-M Mercury	(ISD2) Source	ID: BB0362	4-03 107	70-130	0.600	20	03/08/2024	SAS	

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Quality Control Report (Continued)

Analida Nama	Method		%	Recovery		RPD		Analyst	
Analyte Name	Blank	Units	Recovery	Limits	RPD	Limit	Analyzed	Initials	Qualifier
Dissolved Metals									
Batch: B240802									
Blank (B240802-BLK1)									
Copper	<0.15	ug/L					03/08/2024	DMW	U
Zinc	<0.50	ug/L					03/08/2024	DMW	U
LCS (B240802-BS1)									
Copper			91.8	85-115			03/08/2024	DMW	
Zinc			93.3	85-115			03/08/2024	DMW	
Duplicate (B240802-DUP1)	Source ID: ACO	1337-03							
Copper		007-00			1.42	10	03/08/2024	DMW	
Zinc					1.17	10	03/08/2024	DMW	
Matrix Spike (P240802 MS4)	Source ID: AC	00227.02							
Copper	Source ID. AC	00337-03	90.6	70-130			03/08/2024		
Zinc			89.1	70-130			03/08/2024		
Matrix Calles Day (Do topog t	1004)	D 100000					00,00,2021	0	
Copper	(Source)	ID: AC0033	7-03	70 120	0.954	10	02/00/0004	D1414/	
Zinc			69.4 86.0	70-130	1 20	10	03/08/2024		
			00.0	10-100	1.20	10	03/00/2024	DIVIVV	
Batch: B241178									
Blank (B241178-BLK1)									
Cadmium	< 0.010	ug/L					04/04/2024	DMW	U
Lead	<0.0090	ug/L					04/04/2024	DMW	U
LCS (B241178-BS1)									
Cadmium			99.9	85-115			04/04/2024	DMW	
Lead			99.4	85-115			04/04/2024	DMW	
Duplicate (B241178-DUP1)	Source ID: AC00	340-01							
Cadmium					NR	10	04/04/2024	DMW	U
Lead					2,01	10	04/04/2024	DMW	
Matrix Spike (B241178-MS1)	Source ID: AC	00340-01							
Cadmium			102	70-130			04/04/2024	DMW	
Lead			98.4	70-130			04/04/2024	DMW	
Matrix Spike Dup (B241178-N	(SD1) Source I	D: AC00340	0-01		3.679				
Cadmium	·, ·····		102	70-130	0.490	10	04/04/2024	DMW	
Lead			98.3	70-130	0.146	10	04/04/2024	DMW	

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Notes and Definitions

ltem	Definition	
D	Data reported from a dilution	
U	Analyte included in the analysis, but not detected	
Method	Reference Acronyms	

Colilert	Colilert, IDEXX Laboratories, Inc.
EPA	Manual of Methods for Chemical Analysis of Water and Wastes, USEPA
GS	USGS Techniques of Water-Resources Investigations
НН	Hach Spectrophotometer Procedures Manual
SM	Standard Methods for the Examination of Water and Wastewater
SW	Test methods for Evaluating Solid Waste, SW-846

for JFK

Janet Finegan-Kelly Water Quality Laboratory Manager

Stephen Quintero or Azubike Emenari QA/QC Coordinator

Ac	da Coi	unty Hig	jhway [District													*******		the second		
Att	n: Steve	en Turner	-					Matrix	Туре	e								1	Ž		
377 Gai Tel Fax Pur Pro Sar	75 Adar rden Ci I. (208) x (208) rchase oject: mpler(s	ns Street ty, Idaho 8 387–6269 387–6391 Order:):	8371464) 	630656 Stormw Kristi Skure	528 vater-PI กิ(โนร กิ) Tu	helm ner					0B		U	.2	EDA 965 4	- EPA 200.8	, Zn - EPA 200.8	2462 DV 1001 405 - E Dd	-2011G1 - 11-10111-1 - 12-27	X 200.7	A 353.2 VH D
L	.ab#	Begin Date	End Date	Begin Time	End Time	Sample Identification	Sampler Initial	Water	Grab	Composite	BOD ₅ - SM 521	TSS - SM 2540	TDS - SM 2540	TKN - EPA 351	TP - EPA 200.7 Orthophocohoto	Total As, Cd, Pt	Diss. Cd Cu, Pb	Total Hg - EPA	Turbidity - EPA	Hardness - EP/	NO ₃ +NO ₂ - EP, NH ₁ - SM 4500
Aci	336-01	2/20/24	2/211/24	1004	1620	240226-206-WC	ST	X	·	Х	XX	K	K.	XX	ίx	×	×	14	X	X	κ×
						7.02 4 8.12															
-																					

Reli	inquist	ned by (si	ign)	Date Tran	& Time sferred	Received by (sign)				Co	mme	nts/	Spe	cial	Ins	truc	tion	s:			
fist	er / /	usbl.		2/26/2	1 215	8 Ave 2-27	0705														
	vql-pi										ŧ	: A	CI	00).3		2			1000	

00	0			- 2	
 w		w	i lesi	г н.	
			1° 1	P .	

Technical Memorandum

1290 W. Myrtle St. Suite 340 Boise, ID 83702

Phone: 801.316.9859

Prepared for:Ada County Highway DistrictProject Title:NPDES Phase I Stormwater Support WY 2024Project No.:159103

Technical Memorandum

Subject:ACHD Phase I Storm Event Report for March 28, 2024Date:June 20, 2024To:Monica LoweCc:Steven Turner
Kristen ChisholmFrom:Zuly Lapa, Project Engineer

Prepared by: Zuly Lapa, EIT, Project Engineer

Reviewed by: Melissa Jannusch, PE, Project Manager

Limitations:

This document was prepared solely for ACHD in accordance with professional standards at the time the services were performed and in accordance with the contract between ACHD and Brown and Caldwell dated October 10, 2023. This document is governed by the specific scope of work authorized by ACHD; it is not intended to be relied upon by any other party except for regulatory authorities contemplated by the scope of work. We have relied on information or instructions provided by ACHD and other parties and, unless otherwise expressly indicated, have made no independent investigation as to the validity, completeness, or accuracy of such information.

Section 1: Introduction

The Environmental Protection Agency Region 10 reissued a Municipal Separate Storm Sewer System Phase I National Pollutant Discharge Elimination System Permit (NPDES) Permit, effective October 1, 2021, to Ada County Highway District (ACHD), Boise City, Ada County Drainage District No. 3, Idaho Transportation Department District 3, Boise State University, and Garden City. Under the NPDES Permit, Permittees are required to continue to conduct wet weather stormwater outfall monitoring and subwatershed monitoring. Four outfall monitoring sites (Lucky, Whitewater, Main, and Americana) and one subwatershed monitoring site (AS_6) have been established. The AS_6 site represents a subwatershed located within the Americana watershed. At each site, a minimum of three composite and three grab samples will be collected during Water Year (WY) 2024 (October 1, 2023, through September 30, 2024). The following storm event report summarizes stormwater sampling results from the March 28, 2024, storm event.

Section 2: Project Status

Table 2-1 is a summary of the sample types collected to date for WY 2024 Phase I Stormwater Outfall Monitoring. When samples are qualified, additional samples will be attempted from subsequent storms to collect unqualified samples.

	Table 2	-1. WY 2024 Sai	mples Collected		
Date	Lucky	Whitewater	Main	Americana	AS_6
October 10, 2023	G, C ^{1,2}	G		G, C ³	
November 19, 2023	G, C	G, C	G, C	G ⁴ , C	G, C
February 1, 2024	G⁵, C	G ⁵ , C ⁶	G⁵, C	G⁵, C	G⁵, C
February 26, 2024	G, C	G, C	G, C ⁷	G, C	G, C
March 28, 2024		С	G, C	G	G
Unqualified Samples:	3G, 3C	3G, 3C	3G, 3C	3G, 3C	3G, 3C
Samples Remaining:	0G, 0C	0G, 0C	0G, 0C	0G, 0C	0G, 0C

Notes:

-- = no samples taken

C = composite sample

G = grab sample

¹Composite samples qualified due to lack of representativeness (50%-75%).

² Incomplete water quality analysis due to low composite sample volume.

³ Composite samples qualified due to lack of representativeness (50%-75%) of the calculated flow volume.

⁴ Incomplete field parameter collection on the grab sample data form due to field error.

⁵ E. coli sample qualified due to exceeded hold time.

⁶ Composite sample rejected due to automatic sampler triggering prior to storm event runoff. The subsamples taken prior to the event represented more than 10% of the composite volume.

⁷ Composite sample qualified due to automatic sampler triggering prior to storm event runoff. The subsamples taken prior to the event represented less than 10% of the composite volume.

Section 3: Storm Event Summary

The March 28, 2024, storm event and the subsequent preparation and sampling efforts are detailed in the following sections.

3.1 Storm Detail

A summary of the forecast on which monitoring decisions were based is detailed below. The sampling event communication form that describes the forecast and summarizes the decision-making process from March 28, 2024, is included in Attachment A for reference.

Wednesday, March 27, 2024 to Thursday, March 28, 2024

- On the morning of March 27, the National Weather Service issued a forecast of rain shadowing and light rain in the Boise area, starting March 27 at 1800 until March 28 at 0300. Rain was predicted to increase until March 28, 2024 at 1000. The chance of precipitation was 90%, with more than 0.1 inches of precipitation forecasted.
- Setup was accomplished in the afternoon of March 27. An expected precipitation depth of 0.11 inches was used to set trigger volumes at monitoring stations. A runoff calculations worksheet showing how the trigger volumes were calculated is included in Attachment A.
- Moderate rain first started at approximately March 27 at 1901 and ended March 28 at 1249.
- Precipitation totals ranged between 0.53 and 0.59 inches at local rain gauges.

Flow measurements and precipitation data are listed in Table 1 along with a sampling summary. Hydrographs for the Whitewater, Main, Americana and AS_6 sites showing flow, rain, and sample collection data are included in Attachment B.

3.2 Sampling Summary

Whitewater and Main monitoring stations were set up on March 27, to collect flow-proportional composite samples during the storm. Sampler enable conditions were programmed into the Whitewater and Americana flowmeters. A site-specific velocity cutoff value was programmed into Main and AS_6 flowmeter. Setup and sampling information are included in Table 1. The field forms completed during setup/shutdown and sampling are included in Attachment C.

Grab Samples

A two-member team mobilized to collect stormwater runoff grab samples and verify operation of the automatic sampling equipment on March 28 around 0131. Grab samples for Main, Americana, and AS_6 was submitted to the West Boise Water Quality Lab (WQL) at 0816 on March 28.

Results for grab samples, including field parameter and analytical data, are included in Table 2. Laboratory analytical reports are included in Attachment D.

Composite Samples

Composite samples were collected at the Main monitoring station and submitted to the WQL at 1134 on March 28. The composite sample at Whitewater monitoring station was submitted at 1314 on March 28 to the WQL.

Analytical results are shown in Table 2 and pollutant loading estimates for the event are detailed in Table 3. Laboratory analytical reports are included in Attachment D.

Brown AND Caldwell

Section 4: Quality Assurance/Quality Control

A summary of quality control samples collected during the March 28, 2024, storm event is presented below in Table 4-1. A field blank and a field duplicate were collected from the Main monitoring station. A field blank composite sample was collected from the Americana monitoring station. The analytical results for these samples are included in Table 4.

		Table 4-1. Q	uality Control Samples
Sample ID	Sample Type	Parent Sample	Conclusions
240328-12-001	Field blank	Main grab	No E. coli detection was reported in the field blank.
240328-12-101	Field duplicate	Main grab	Relative percent difference was within the acceptable range.
240328-14-002	Field blank composite	None	No composite parameter detection was reported on the field blank composite.

Data quality objectives for this storm were evaluated and tracked using the data validation review checklist included in Attachment A. Performance criteria for analytical and non-analytical data was met for this storm event.

Section 5: Notes and Recommendations

Whitewater

At Whitewater, composite sample bottle 3 had a power failed error message from 0405 until 0407 on March 28, due to the battery on the sampler running low. The error message was present for the last four subsamples in bottle 3. The battery was replaced prior to installing bottle 4, resolving the error message.

Data Tables

TAB-1 ACHD_240328 SER PI SER_159103_FINAL

	Table 1. Sam	pling and Flow Sum	mary		
	Lucky	Whitewater	Main	Americana	AS_6
Grab samples collected and submitted?	NO	NO	YES	YES	YES
Composite samples collected and submitted?	NO	YES	YES	NO	NO
Trigger volume (ft ³)		800 cf	3411 gal		
Velocity cutoff (fps)					
Sampler enable condition (in)		Level > 3.3 "	Level > 1.84 "		
Runoff start time		1919 ¹	1911 ¹	1901 ¹	1930 ¹
Grab sample collection time			0137	0159	0219
Composite sample stop time		1133	0739		
Runoff stop time		1249 ²	0817 ²	0928 ²	1013 ²
Volume of discharge sampled (ft ³)		127,090	37,197		
Total runoff volume (ft ³)		154,801	48,613	372,974	37,320
Percent of storm flow sampled (%)		82%	77%		
Composite sample duration (hrs)		13	11		
Storm Precipitation (in)	0.53	0.59	0.53	0.53/0.56	0.53/0.56
Referenced Rain Gauge	Cynthia Mann	Whitewater	Front	Front/East	Front/East
Sampler messages (counts): Success		159	70		
Number of composite bottles filled		8	3		
Composite sample volume (Approx.; ml)		88,300 ml	40,500 ml		

Notes:

- = No data.

1 Storm runoff started on 3/27/2024.

2 Storm runoff ended on 3/28/2024.

J											Tal	ble 2. Field a	ind Analytic	al Data Sum	imary												
				Field I	Parameters											Anal	ytical Paramet	ers									
Monitoring	Sample Date	Sample ID Croh	Dissolved	nU	Conductivity	Tomporatum	E coli	Sample ID	POD	000	Hardness as	Turbidity	TCC	TDC	Total	Orthophosphate	Ammonia as	Nitrate +	TKN	Arconio total	Cadmium,	Cadmium,	Copper,	Lead,	Lead,	Mercury,	Zinc,
Station	Sample Date	Sample to Glab	Oxygen	pii	conductivity	remperature	E. 001	Composito	0005	000	CaCO ₃	Turbidity	133	105	Phosphorus	as P	N	Nitrite as N		Alsonic, total	dissolved	total	dissolved	dissolved	total	total	dissolved
			mg/L	S.U.	uS/cm	С	mpn/100 mL	Composite	mg/L	mg/L	mg/L	NTU	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Lucky	3/28/2024	240328-03-WG						240328-03-WC																			-
Whitewater	3/28/2024	240328-11-WG						240328-11-WC	8.20	84.0	31.9	26.2	131	76.0	0.318	0.131	0.236	0.277	1.63	2.0	< 0.0100	0.074	1.9	0.097	5.8	0.0151	9.80
Main	3/28/2024	240328-12-WG	10.02	7.82	116.08	10.91	21.6	240328-12-WC	5.03	104	12.6	24.6	91.7	44.2	0.145	0.0494	0.293	0.151	1.18	1.1	< 0.0100	0.071	2.3	0.068	5.9	0.0171	14.7
Americana	3/28/2024	240328-14-WG	10.57	7.28	255.40	9.79	365.4	240328-14-WC																			-
AS_6	3/28/2024	240328-206-WG	9.92	7.60	108.59	7.74	387.3	240328-206-WC																			-

Notes: - = No data.

	Table 3. Ev	ent Pollutar	nt Loading Estima	ates in Pound	ls	
Monitoring Station	Event Date	тее	Total	Ammonia	Nitrate +	TKN
Monitoning Station		100	Phosphorus	as N	Nitrite as N	ITAN
Lucky	3/28/2024					
Whitewater	3/28/2024	1266	3.07	2.28	2.68	15.7
Main	3/28/2024	278.2	0.440	0.889	0.458	3.58
Americana	3/28/2024					
AS_6	3/28/2024					

Notes:

– = No data.

		Table 4. QC Sample	e Summary																				
Date		Sample ID	Туре	E. coli	BOD ₅	COD	Hardness as CaCO3	Turbidity	TSS	TDS	Total Phosphorus	Dissolved Orthophosphate	Ammonia	Nitrate + Nitrite (N)	TKN	Arsenic, total	Cadmium, dissolved	Cadmium, total	Copper, dissolved	Lead, dissolved	Lead, total	Mercury, total	Zinc, dissolved
				mpn/100 mL		mg/L						mg/L	mg/L	mg/L				ug/L		ug/L	ug/L	ug/L	
3/28/2024	240328-12-WG	240328-12-001	Field Blank	<1.0																			
3/28/2024	240328-12-WG	240328-12-101	Field Duplicate	17.3																			
	Calculated p	parent/duplicate RPD		5%																			
	Ali	owable RPD		40%	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%
3/28/2024		240328-14-002	Field Blank Composite		<2.00	<7.00	<0.100	<0.3	<0.900	<20.0	<0.0120	<3.00E-3	<0.0450	< 0.0250	<0.100	<0.0700	<0.0100	<0.0100	<0.150	<9.00E-3	<0.0100	<0.0100	<0.500

Notes: - = No data.

Attachment A: Supplemental Documents

Sampling Event Communication Form Data Validation Checklist Runoff Calculation Worksheet

SAMPLING EVENT COMMUNICATION FORM

Date: 03/27/2024	Time: 8:10 AM	Initials:	ST
Is there a targeted sampling event du	ring the next 36 hours?		Maybe
(Or, if it is Friday, is a targeted event e	expected before 5:00 PM Monday?)		

Past 72 hr Precip	0.08" at airport
Date and time of expected event	3/28/24 @ 3:00 am
Expected amount of precipitation	0.16"
Percent chance of precipitation	94%
Percent chance of >0.10" over 12 hours	90%

NWS Update

Spoke with Les from NWS and he said the main band of the rain will start around 3:00 AM with some light sprinkles around 6:00 pm on 3/27/24 resulting from rain shadowing. The total rain from 6:00 PM (3/27) – 3:00 AM (3/28) will be 0.02". There will be constant showers until 10:00 AM and there may be some light sprinkles till 12:00 PM. Theres a 90% chance we will receive over 0.1" of rain.

Targeted Station	& Samples				
Lucky	Whitewater	Main	Americana	AS_6	State (Phase II)
🗆 Grab	🗆 Grab	🖾 Grab	🖾 Grab	🖾 Grab	🖾 Grab
Composite	🛛 Composite	🛛 Composite	Composite	🗆 Composite	🛛 Composite

Type of Forecasted Precipitation		
🗆 Light Rain	🖾 Rain	🗌 Rain on Snow
Scattered Showers	\Box Thunder Showers	Snowmelt
□ Other:		

Reasons for Not Targeting a Forecasted Storm and/or Stations

□ Holiday

□ Waiting on Antecedent Dry Period – Expires:

Equipment Concerns:

 \Box Other:

Text Forecast

NWS Forecast for: 2 Miles NNW Garden City ID Issued by: National Weather Service Boise, ID Last Update: 3:29 am MST Mar 27, 2024

Today: Scattered showers after noon. Mostly cloudy, with a high near 58. Southeast wind 7 to 14 mph. Chance of precipitation is 30%.

Tonight: Showers. Low around 39. East southeast wind 6 to 13 mph. Chance of precipitation is 90%. New precipitation amounts between a tenth and quarter of an inch possible.

Thursday: Showers likely, with thunderstorms also possible after noon. Mostly cloudy, with a high near 54. Calm wind becoming west 5 to 8 mph in the afternoon. Chance of precipitation is 70%.

Thursday Night: A 20 percent chance of showers before midnight. Mostly cloudy, with a low around 35. West southwest wind around 6 mph becoming east southeast after midnight.

Friday: A 20 percent chance of showers after noon. Partly sunny, with a high near 55. East southeast wind 3 to 7 mph.

Friday Night: Mostly cloudy, with a low around 34.

Saturday: Partly sunny, with a high near 59.

Saturday Night: A 20 percent chance of showers after midnight. Partly cloudy, with a low around 35. Sunday: A 30 percent chance of showers, mainly before noon. Mostly sunny, with a high near 60. Sunday Night: Mostly clear, with a low around 34. Monday: Sunny, with a high near 63. Monday Night: Mostly clear, with a low around 38. Tuesday: Sunny, with a high near 71.

Forecast Discussion

Area Forecast Discussion National Weather Service Boise ID 356 AM MDT Wed Mar 27 2024

.SHORT TERM... Today through Friday night... A warm frontal passage this morning will open up into moist southwest aloft this afternoon. Precipitation will initiate over southeast Oregon early in the afternoon, spreading into southwest Idaho by early evening. While the thunderstorm threat today is less than 15% an overlap in daytime heating and increasing instability aloft could support a strike/flash over portions of SE Oregon, mainly Harney/Malheur counties. The increased flow aloft and deep Pacific low will bring breezy conditions today, the strongest winds across southeast Oregon. Wednesday night is wet across the region as a broad upper low approaches the Pac NW coast. The mountains of e-central Oregon and w-central Idaho see the focus of heaviest precipitation through Thursday morning where liquid totals of 0.50 to 1.00 inch are expected. Snow levels through Wednesday night will run 5000 to 6000 kft dropping to 3500 to 5000 ft Thursday. Total accumulation of 5 to 10 inches is expected above 6000 ft with up to 2 inches in mountain valleys above 4500 feet. Lower elevations that stay dry into Wednesday evening will see precipitation fill in overnight with the passage of a cold front. Lower valleys are likely to see 0.10 to 0.20 inch of rain. The main low will reach the WA coast on Thursday, the accompanying colder air aloft and daytime heating supporting a continued chance of showers and slight chance of thunderstorms. The shower threat retreats to the mountains Thursday night, expanding again on Friday with a 20% chance in the valleys and 40 to 70 percent chance in the mountains.

.LONG TERM...Saturday through Wednesday...The closed upper level low will move to our southwest on Saturday, becoming a positively tilted upper level trough that will keep temperatures cool through the weekend. Lingering moisture with this trough will also allow for a slight chance of precipitation (20-30% chance) over high terrain and near the Nevada border on Saturday and Sunday. Temperatures will be slightly below normal, with snow levels right around 4000-5000 feet. Any snow accumulations will be minimal, with higher elevations in the mountains seeing anywhere from 1-3 inches by Sunday night. This low will begin to move out on Monday, with a deep ridge building in over the region late Monday into Tuesday, bringing above normal temperatures and dry conditions through Wednesday. Tuesday looks to be the warmest day, with temperatures in the valleys reaching the upper 60s and low 70s.

Good model agreement exists with this pattern through next week, with only slight variation in the deterministic model's evolution of the closed low. This accounts for the forecast uncertainty in precipitation this weekend, although all ensembles and deterministic solutions show light precipitation

Storm Event QA/QC Checklist – Phase I

STORM DATE 3/28	24								
A. Event and Data Completeness	Yes	No	N/A	Notes			1		1.000
1. Field data sheets filled out completely and clearly	X								
2. Field parameters reviewed, and any problems/issues addressed	X								
3. All samples collected as specified	X								
4. All samples delivered to lab promptly (review chain of custody rpts)	X								
5. Inconsistencies/clarifications discussed with sampling team member			×						
6. All analytical reports from lab received	X								
B. Validation and Verification Methods	Yes	No	N/A	Notes					Ph 1
1. Outliers and unexpected values discussed with lab			X	ITOTES					
2. Appropriate analytical methods used	X		- ^						
3. All lab QA samples were within method acceptance criteria	X								
4. All samples reviewed and data qualifiers assigned if needed	X								
5. Data quality objective achieved	X								
C. Specific Storm and Sample QA/QC Criteria	Lucky	Whitewater	Main	Americana	AS_6	Program Criteria	Met	Qualify	Reject
1. Antecedent dry period (inches in previous 72-hours)	0.01	0.01	0.00	0.00/	0.09/ 0.02	< 0.11" in 72 hrs	×		
2. Precipitation (inches)	0.53	0.59	0.53	0.53/	0.53/	> 0.10"			
3. Sampled amount (% of total run-off)		82%	77.1	-0.0	0.56	>= 75% or >= 6 hrs: no qualifier			
4. Composite sample duration (hours)		13	11		-	>= 50% and <75%: qualify < 50%: reject	X		
4. Ecoli sample holding time (hours)	_	-	7.0	7.0	6.5	<=8 hrs: no qualifier >8 and <=16 hrs.: qualify >16 hrs.: reject	X		
5. Filtering of samples for dissolved parameter analysis (hours)	-	2.5	5.0		-	<= 24 hrs: no qualifier	Х		
D. Natas		2.1.2.	110.127					<u> </u>	

Reviewed by Steven Turner

_Date_5/16/24

Approved by Monica hour Date 5/17/ 24

Storm Runoff Estimates and Trigger Volumes

- Step 1. Enter runoff coefficients in yellow cells.
- Step 2. Enter expected precipitation depth (in) in blue cell.
- Step 3. Read trigger volumes (**bold**) in green cells.

Expected Precipitation Depth =	0.11
Aliquots per Sample =	17

		Using RC calculated from flow data					
Site	Area		Expected	Trigger			
	(ac)	RC	Vol (ft ³)	Vol (ft ³)			
Lucky	105	0.157	6582.5	387			
Whitewater	498	0.069	13621.3	801			
Main	79	0.246	7760.0	456			
Main Alt	60	0.200	4791.6	282			
Americana	875	0.144	50311.8	2960			
AS_6	204	0.046	3747.0	220			
State	34	0.160	2172.2	128			

Notes:

Calculated RC = Average (precip (ft) / [volume (ft^3) x area (ft^2)])

Where precip (ft) is the measured amount from local rain guage, and volume (ft³) is the measured discharge, and area (ft²) is the watershed area

Expected volume (ft^3) = RC x expected precip (ft) x area (ft^2)

Attachment B: Storm Event Hydrographs

Attachment C: Field Forms

Set Up/ Shut Down Form – ISCO (Whitewater, Americana, State)

	Time	Level (in)	Flow (cfs)	Velocity (fps)	Battery (V)
Personnel: KC, ST	12/5	2.71	0.07	0.25	<u> </u>
Date/Time					
	E	nable Condition:	33		
		Hysteresis:	annac		

 Replace flowmeter battery, install sampler battery Perform decon. cycle Install 15L sample bottle, with ice Leave bottle lid at site, in a clean re-sealable plastic bag Set sampler program parameters Check date/time on sampler Verify all cable and tubing connections Verify sampler program is running 	 Direct or Remote; Date/time <u>127/24</u> (327) Retrieve data and review recent flow history Change Wireless Power Control to Storm Event Change Data Storage Rates to 1 minute for Level, Velocity, Total Flow, and Flow Rate Enable Sampler: On Trigger, and set Sampler Enable equation Set Sampler Pacing to Flow Paced, and set trigger volume
---	--

Comments:

3/27/24 1338 ol

SHUT DOWN

Desternels	55	Time	Level (in)	Flow (cfs)	Velocity (fps)	Battery (V)
Personnei:		12:09	2.13	0.09	0.33	~
Date/Time	21-1 200	D	ownloaded to:	Steven	s usb	
On-Site:	3/29/24 1209					

<u>On-Site</u> ⊡ Replace flowmeter battery ☑ Remove battery from sampler	Flowlink (Refer to Flowlink Instructions, if needed) Direct or Remote; Date/time 3/29 1210 Retrieve data Change Wireless Power Control to Dry Weather Change Data Storage Rates to 15 minutes for Level, Valority, Total Flow, and Flow Rate
	Velocity, Total Flow, and Flow Rate
	🖾 Enable Sampler: Never

Comments:

STATION: Wh. Personnel:

: ter

C.

Composite Sample Collection

Date/Time On-Site: 3/28

Bottle

Halt sampler program		
Put lid on sample bottle; label sample bottle		
Sample ID:	240328 - M WC	
Approx Sample Volume (mL):	9500mL	
Clarity (ex. Clear, Cloudy, Silty):	lan Cloudy	
Color (ex. Clear, Gray, Tan, Brown, Black):		
QA/QC Sample ID:	-103	(Time: 1200)

	Subsample Information						
Trigger #	Date/Time	Error Message/ Subsample Result	Trigger #	Date/Time	Error Message/ Subsample Result		
1	3/27/24 2007	SUCCESS	13	0148	SUCCESS		
2	2036		14	0157			
· 3	2056		15	1205			
4	215		16	0212			
5	238		17	0219			
6	2206		18	0225			
7	2238		19	0131	V		
8	23 3		20	0238	Stanged		
9	2352		21				
10	3/28/240033		22				
11	015		23				
12	0137	T	24				

Comments:

If sampling is complete:

- D Power off sampler, if separate from flowmeter
- □ Keep flowmeter running
- □ Add ice to sample transport cooler

- If continuing sampling (sample bottle change-out): 🖾 Keep flowmeter running A Install new 15L bottle; add ice
 - Restart program from beginning Date/Time Restarted: _____6

K Verify running

	Liquid Height vs. Approximate Sample Volume Conversion Chart								
Liquid	Sample	Liquid	Sample	Liquid	Sample	Liquid	Sample	Liquid	Sample
Height	Volume	Height	Volume	Height	Volume	Height	Volume	Height	Volume
0.5"	400 mL	3.0"	3500 mL	5.5"	7250 mL	8.0"	11000 mL	10.5"	14750 mL
1.0"	800 mL	3.5"	4250 mL	6.0"	8000 mL	8.5"	11750 mL	11.0"	15500 mL
1.5"	1400 mL	4.0"	5000 mL	6.5"	8750 mL	9.0"	12500 mL	11.5"	16250 mL
2.0"	2000 mL	4.5"	5750 mL	7.0"	9500 mL	9.5"	13250 mL	After 12"	1" = 1500 mL
2.5"	2750 mL	5.0"	6500 mL	7.5"	10250 mL	10.0"	14000 mL	Lab min	8.000 mL

3-3/29

STATION: Whitewater Personnel: KG1 ST

Composite Sample Collection

Date/Time On-Site: 3/28/24 5345

Halt sampler program			
Put lid on sample bottle; label sample bottle			
Sample ID:	240328-11	-WC	
Approx Sample Volume (mL):	140 Dm		
Clarity (ex. Clear, Cloudy, Silty):	Cloridia		
Color (ex. Clear, Gray, Tan, Brown, Black):	- Bent		
QA/QC Sample ID:		-103	(Time: 1200)

	Subsample Information							
Trigger #	Date/Time	Date/Time Error Message/ Trigger Subsample Result #		Date/Time	Error Message/ Subsample Result			
1	3/28/24 0253	Success	13	3/28/24 0329	Success			
2	1 0259	1	14	0330	1			
3	0305		15	0332				
4	0310		16	0333				
5	0313		17	0333				
6	0317		18	0334				
7	0319		19	0335				
8	0321		20	0336				
9	0323		21	0337				
10	0325		22	0338				
11	0326		23	0339				
12	V 0328	P.	24	J 0340	Y			

Comments:

Date/Time Off-Site: 3 28 24

If sampling is complete:

- Power off sampler, if separate from flowmeter
- □ Keep flowmeter running
- □ Add ice to sample transport cooler

If continuing sampling (sample bottle change-out): Keep flowmeter running Install new 15L bottle; add ice Restart program from beginning Date/Time Restarted: 0.3413/28 Verify running

		1000	Liquid Height	s. Approxim	ate Sample Volu	ume Conven	sion Chart		- 10 CAR
Liquid Height	Sample Volume								
0.5"	400 mL	3.0"	3500 mL	5.5"	7250 mL	8.0"	11000 mL	10.5"	14750 mL
1.0"	800 mL	3.5"	4250 mL	6.0"	8000 mL	8.5"	11750 mL	11.0"	15500 mL
1.5"	1400 mL	4.0"	5000 mL	6.5"	8750 mL	9.0"	12500 mL	11.5"	16250 mL
2.0"	2000 mL	4.5"	5750 mL	7.0"	9500 mL	9.5"	13250 mL	After 12"	1" = 1500 mL
2.5"	2750 mL	5.0"	6500 mL	7.5"	10250 mL	10.0"	14000 mL	Lab min	8,000 mL

Revised 240123 KC

STATION: Personnel:

Composite Sample Collection

Date/Time On-Site: 3/2 x

of 8

Bottle

 Halt sampler program

 Put lid on sample bottle; label sample bottle

 Sample ID:
 3, 24,32,8,-1)

 Approx Sample Volume (mL):

 Clarity (ex. Clear, Cloudy, Silty):

 Color (ex. Clear, Gray, Tan, Brown, Black):

 QA/QC Sample ID:

Subsample Information											
Trigger #	Date/Time	Error Message/ Subsample Result	Trigger #	Date/Time	Error Message/ Subsample Result						
1	3/23/24 0347	Success	13	3 28 24 357	Success						
2	0348	1	14	1 358	1						
3	0349		15	359							
4	350		16	400							
5	35		17	401							
6	352		18	402							
7	352		19	403							
8	353		20	404	Y						
9	354		21	405	Power failed						
10	355		22	400	1						
11	356		23	406							
12	356		24	407	J.						

Comments:

Date/Time Off-Site:

If sampling is complete:

D Power off sampler, if separate from flowmeter

NIT

- □ Keep flowmeter running
- Add ice to sample transport cooler

- If continuing sampling (sample bottle change-out): Keep flowmeter running Install new 15L bottle; add ice
 - Restart program from beginning
 - Date/Time Restarted: 31814418
 - Verify running

Liquid Height vs. Approximate Sample Volume Conversion Chart											
Liquid	Sample	Liquid	Sample	Liquid	Sample	Liquid	Sample	Liquid	Sample		
Height	Volume	Height	Volume	Height	Volume	Height	Volume	Height	Volume		
0.5"	400 mL	3.0"	3500 mL	5.5"	7250 mL	8.0"	11000 mL)	10.5"	14750 mL		
1.0"	800 mL	3.5"	4250 mL	6.0"	8000 mL	8.5"	11750 mL	11.0"	15500 mL		
1.5"	1400 mL	4.0"	5000 mL	6.5"	8750 mL	9.0"	12500 mL	11.5"	16250 mL		
2.0"	2000 mL	4.5"	5750 mL	7.0"	9500 mL	9.5"	13250 mL	After 12"	1" = 1500 mL		
2.5"	2750 mL	5.0"	6500 mL	7.5"	10250 mL	10.0"	14000 mL	Lab min	8,000 mL		

Revised 240123 '
STATION: White water

Personnel: 1-6-

Composite Sample Collection

Bottle _____ Date/Time On-Site: 3

🛛 🖾 Halt sampler program			
Put lid on sample bottle; label sample bottle			
Sample ID:	240328-11	-WC	
Approx Sample Volume (mL):	13260 in	1	
Clarity (ex. Clear, Cloudy, Silty):	Cloudy		
Color (ex. Clear, Gray, Tan, Brown, Black):	Great		
QA/QC Sample ID:		-103	(Time: 1200)

	Subsample Information								
Trigger #	Date/Time	Date/Time Error Message/ Subsample Result		Date/Time	Error Message/ Subsample Result				
1	3 28 24 419	Success	13	439	Surcess				
2	1 020	1	14	442					
3	421		15	445					
4	423		16	447					
5	424		17	460					
6	426-24	4	18	4153					
7	428		19	456					
8	429		20	468					
9	431		21	561					
10	433		22	524					
11	135	Y	23	5010					
12	437 6	Kipped	24	609	F				

Comments:

If sampling is complete:

- D Power off sampler, if separate from flowmeter
- □ Keep flowmeter running
- □ Add ice to sample transport cooler

If continuing sampling (sample bottle change-out): 🖾 Keep flowmeter running P Install new 15L bottle; add ice Date/Time Restarted: 328 512 🖾 Verify running

			Liquid Height	vs. Approxim	ate Sample Vol	ume Conver	sion Chart		
Liquid	Sample	Liquid	Sample	Liquid	Sample	Liquid	Sample	Liquid	Sample
Height	Volume	Height	Volume	Height	Volume	Height	Volume	Height	Volume
0.5"	400 mL	3.0"	3500 mL	5.5"	7250 mL	8.0"	11000 mL	10.5"	14750 mL
1.0"	800 mL	3.5"	4250 mL	6.0"	8000 mL	8.5"	11750 mL	11.0"	15500 mL
1.5"	1400 mL	4.0"	5000 mL	6.5"	8750 mL	9.0"	12500.mL	11.5"	16250 mL
2.0"	2000 mL	4.5"	5750 mL	7.0"	9500 mL	9.5"	13250 mL	After 12"	1" = 1500 mL
2.5"	2750 mL	5.0"	6500 mL	7.5"	10250 mL	10.0"	14000 mL	Lab min	8.000 mL

STATION aler

Personnel:

Composite Sample Collection

Date/Time On-Site 3 28 24 0555

Halt sampler program			
🔟 Put lid on sample bottle; label sample bottle			
Sample ID:	240328-11	-WC	
Approx Sample Volume (mL):	13250		
Clarity (ex. Clear, Cloudy, Silty):	acusty		
Color (ex. Clear, Gray, Tan, Brown, Black):	Carrier		
QA/QC Sample ID:		-103	(Time: 1200)

	Subsample Information							
Trigger #	Date/Time	Date/Time Error Message/ Subsample Result		Date/Time	Error Message/ Subsample Result			
1	328/24/513	Success	13	3/28/24 534	Success			
2	1 515	1	14	1 535	1			
3	517	C. C. INFERIOR	15	5:37				
4	519	1111 1	16	538				
5	521	1 1.74	17	640	Later by advance			
6	522		18	541	, can be and			
7	524	6 4C4 4	19	543	C C C DARGE C			
8	526		20	545	10002.5.3.8			
9	527	10 10 10 10 10 10 10 10 10 10 10 10 10 1	21	540				
10	529	444597	22	548	1334 marat			
11	531	No. of the second secon	23	549				
12	V 532	J	24	\$ 551	Y			

Comments:

If sampling is complete:

- D Power off sampler, if separate from flowmeter
- □ Keep flowmeter running
- □ Add ice to sample transport cooler

- If continuing sampling (sample bottle change-out):

 - Keep flowmeter running Install new 15L bottle; add ice Restart program from beginning Date/Time Restarted: 349124 (2022)
 - 📱 Verify running

	Liquid Height vs. Approximate Sample Volume Conversion Chart								
Liquid	Sample	Liquid	Sample	Liquid	Sample	Liquid	Sample	Liquid	Sample
Height	Volume	Height	Volume	Height	Volume	Height	Volume	Height	Volume
0.5"	400 mL	3.0"	3500 mL	5.5"	7250 mL	8.0"	11000 mL	10.5"	14750 mL
1.0"	800 mL	3.5"	4250 mL	6.0"	8000 mL	8.5"	11750 mL	11.0"	15500 mL
1.5"	1400 mL	4.0"	5000 mL	6.5"	8750 mL	9.0"	12500 mL	11.5"	16250 mL
2.0"	2000 mL	4.5"	5750 mL	7.0"	9500 mL	9.5	13250 mL	After 12"	1" = 1500 mL
2.5"	2750 mL	5.0"	6500 mL	7.5"	10250 mL	10.0"	'14000 mL	Lab min	8,000 mL

Revised 220727 TL

Composite Sample Collection

STATION: MACHANALEX

Bottle _____ of _____ Date/Time On-Site: 3 28 22

A Halt sampler program			
Q Put lid on sample bottle; label sample bottle			
Sample ID:	240328-11	-WC	
Approx Sample Volume (mL):	13250		
Clarity (ex. Clear, Cloudy, Silty):	Cloudy		
Color (ex. Clear, Gray, Tan, Brown, Black):	avay		
QA/QC Sample ID:	3.)	-103	(Time: 1200)

	Subsample Information								
Trigger #	Date/Time	Error Message/ Subsample Result	Trigger #	Date/Time	Error Message/ Subsample Result				
1	3/28/24 1001	Success	13	3/28/24 621	Success				
2	1 1002		14	1 (022	1				
3	1004		15	624					
4	iotle		16	626					
5	(08		17	627					
6	1009		18	1029					
7	(0)		19	631					
8	62		20	633					
9	614		21	635					
10	616		22	637					
11	67		23	(039					
12	V 1019	J.	24	1 (04)					

Comments:

If sampling is complete:

- D Power off sampler, if separate from flowmeter
- Keep flowmeter running
- □ Add ice to sample transport cooler

If continuing sampling (sample bottle change-out): Keep flowmeter running Install new 15L bottle; add ice Restart program from beginning Date/Time Restarted: 2128 2404 91 Verify running

			Liquid Height	vs. Approxim	ate Sample Vol	ume Conver	sion Chart		
Liquid	Sample	Liquid	Sample	Liquid	Sample	Liquid	Sample	Liquid	Sample
Height	Volume	Height	Volume	Height	Volume	Height	Volume	Height	Volume
0.5"	400 mL	3.0"	3500 mL	5.5"	7250 mL	8.0"	11000 mL	10.5"	14750 mL
1.0"	800 mL	3.5"	4250 mL	6.0"	8000 mL	8.5"	11750 mL	11.0"	15500 mL
1.5"	1 400 mL	4.0"	5000 mL	6.5"	8750 mL	9.0"	12500 mL	11.5"	16250 mL
2.0"	2 000 mL	4.5"	5750 mL	7.0"	9500 mL	9.5"	13250 mD	After 12"	1" = 1500 mL
2.5"	2750 mL	5.0"	6500 mL	7.5"	10250 mL	10.0"	14000 mL	Lab min	8,000 mL

STATION: Whitewater

Personnel:

Composite Sample Collection Bottle ___

Date/Time On-Site: 3 28 24

of_8

Halt sampler program			
📓 Put lid on sample bottle; label sample bottle			
Sample ID:	240328 11	-WC	
Approx Sample Volume (mL):	13250		
Clarity (ex. Clear, Cloudy, Silty):	Cloudy		
Color (ex. Clear, Gray, Tan, Brown, Black):	Tan		
QA/QC Sample ID:		-103	(Time: 1200)

	Subsample Information								
Trigger #	Date/Time	Date/Time Error Message/ Subsample Result		Date/Time	Error Message/ Subsample Result				
1 3/28/24 1050		Success	13	3/28/24737	Success				
2	1 653		14	1 743					
3	656		15	751					
4	658		16	759					
5	701		17	018					
6	705		18	821					
7	708		19	836					
8	712		20	\$55					
9	716		21	916					
10	721		22	938					
11	725		23	1001					
12	131	1	24	V 1029	T				

Comments:

If sampling is complete:

- Power off sampler, if separate from flowmeter
- □ Keep flowmeter running
- □ Add ice to sample transport cooler

If continuing sampling (sample bottle change-out): 🕰 Keep flowmeter running

- CN Install new 15L bottle; add ice
- **伊** Restart program from beginning Date/Time Restarted: 3144 1033
- Verify running

	Liquid Height vs. Approximate Sample Volume Conversion Chart								
Liquid	Sample	Liquid	Sample	Liquid	Sample	Liquid	Sample	Liquid	Sample
Height	Volume	Height	Volume	Height	Volume	Height	Volume	Height	Volume
0.5"	400 mL	3.0"	3500 mL	5.5"	7250 mL	8.0"	11000 mL	10.5"	14750 mL
1.0"	800 mL	3.5"	4250 mL	6.0"	8000 mL	8.5"	11750 mL	11.0"	15500 mL
1.5"	1400 mL	4.0"	5000 mL	6.5"	8750 mL	9.0"	12500 mL	11.5"	16250 mL
2.0"	2000 mL	4.5"	5750 mL	7.0"	9500 mL	9.5"	13250 mD	After 12"	1" = 1500 mL
2.5"	2750 mL	5.0"	6500 mL	7.5"	10250 mL	10.0"	14000 mL	Lab min	8,000 mL

Composite Sample Collection

STATION: White WATER

Date/Time On-Site:

240328-11	-WC	
400mL		
Cleen		
Tern		
	-103	(Time: 1200)
	240328-11 800 mL Cleen Tom	240328-11 -WC 300 mL Cleen Tenn -103

Subsample Information										
Trigger #	Date/Time	Error Message/ Subsample Result	Trigger #	Date/Time	Error Message/ Subsample Result					
1	3 28 24 133	Success	13							
2			14							
3			15							
4			16							
5			17							
6			18							
7			19							
8			20							
9			21							
10			22							
11			23							
12			24							

Comments:

If sampling is complete:

- Add ice to sample transport cooler

- If continuing sampling (sample bottle change-out):
 - □ Keep flowmeter running
 - □ Install new 15L bottle; add ice
 - □ Restart program from beginning
 - Date/Time Restarted: _____
 - □ Verify running

1.54	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	n	Liquid Height	s. Approxim	ate Sample Volu	ume Convers	sion Chart		
Liquid Height	Sample	Liquid Height	Sample	Liquid Height	Sample Volume	Liquid Height	Sample Volume	Liquid Height	Sample Volume
0.5"	400 mL	3.0"	3500 mL	5.5"	7250 mL	8.0"	11000 mL	10.5"	14750 mL
1.0"	800 mL	3.5"	4250 mL	6.0"	8000 mL	8.5"	11750 mL	11.0"	15500 mL
1.5"	1400 mL	4.0"	5000 mL	6.5"	8750 mL	9.0"	12500 mL	11.5"	16250 mL
2.0"	2000 mL	4.5"	5750 mL	7.0"	9500 mL	9.5"	13250 mL	After 12"	1" = 1500 mL
2.5"	2750 ml	5.0"	6500 mL	7.5"	10250 mL	10.0"	14000 mL	Lab min	8,000 mL

Set Up/ Shut Down Form – HACH (Lucky, Main, AS_6)

TATION: Main		_				
SET UP					6	
Personnel: VC ST	Tim	e	Level (in)	Flow (cfs)	Velocity (fps)	Battery (V)
Personnel. De la la	12	37	6.84	0.00	/2.00	12.8
Date/Time On-Site: 327/24 12:37						
		Enabl	e Condition o	r Velocity Cutoff:	1.84	
,		_		Deadband:		
				Trigger Volume:	3411	
Check date and time on flowmeter and s Set flowmeter program and sampler program and s	ampler gram parameters ogram un flown	uter.				
Personnel: ST	Time	Level (i	n) Flow (cfs) Velocity (fps) Total (d	f) Battery (V)
	12:22	7.4	5 0.0	0 0.0	0 -	12.6
Date/Time On-Site: 3129124 12:22	Down	loaded	to: Stev	ens usp		
If flow monitoring is complete: Hait program on flowmeter Download flowmeter data Remove flowmeter battery			If continuing Replace Reset II Change Start pr	to monitor flow: e flowmeter batte ogging interval to e velocity cutoff to rogram	ry 15 minutes 0.02 fps	

Comments:

STATION: Personnel: **Composite Sample Collection**

Date/Time On-Site:

Bottle

281

Halt sampler program			
D Put lid on sample bottle; label sample bottle			
Sample ID:	14032 - 12	-WC	
Approx Sample Volume (mL):	MOD w.		
Clarity (ex. Clear, Cloudy, Silty):	Clingues		
Color (ex. Clear, Gray, Tan, Brown, Black):	Gray -		
QA/QC Sample ID:		-103	(Time: 1200)

Subsample Information										
Trigger #	Date/Time	Error Message/ Subsample Result	Trigger #	Date/Time	Error Message/ Subsample Result					
1	3/27/2419	33 Success	13	325 0253	Succes					
2	194		14	1 0259	1					
3	20:0	л и д ц и и	15	0303						
4	3128 00:58	1.48,×1.4.4	16	03010						
5	1 01.14	4.4.5.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4	17	0309						
6	01:22	1. No.	18	0312	9 P + 90 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 -					
7	01.30	an a	19	0314	24 44 4 6 6 F					
8	DHO	「「「」」「「」」」」」	20	1316						
9	0.55	2 Account	21	0318						
10	0212	α ε κ:	22	0320						
11	0229		23	. 0322	1000 T					
12	07.44	V.	24	0324						

Comments:

If sampling is complete:

- D Power off sampler, if separate from flowmeter
- □ Keep flowmeter running
- □ Add ice to sample transport cooler

If continuing sampling (sample bottle change-out):

- Keep flowmeter running

335

- ☑ Verify running

			Liquid Height	s. Approxim	ate Sample Vol	ume Convers	sion Chart		
Liquid Height	Sample Volume	Liquid Height	Sample Volume	Liquid Height	Sample Volume	Liquid Height	Sample Volume	Liquid Heiaht	Sample Volume
0.5"	400 mL	3.0"	3500 mL	5.5"	7250 mL	8.0"	11000 mL	10.5"	14750 mL
1.0"	800 mL	3.5"	4250 mL	6.0"	8000 mL	8.5"	11750 mL	11.0"	15500 mL
1.5"	1400 mL	4.0"	5000 mL	6.5"	8750 mL	9.0"	12500 mL	11.5"	16250 mL
2.0"	2000 mL	4.5"	5750 mL	7.0"	9500 mL	9.5"	13250 mL	After 12"	1" = 1500 ml.
2.5"	2750 mL	5.0"	6500 mL	7.5"	10250 mL	10.0	14000 mL	Lab min	8,000 mL

Composite Sample Collection

Personnel: 105

Date/Time On-Site:

Halt sampler program			
Put lid on sample bottle; label sample bottle			
Sample ID:	240328-12	-WC	
Approx Sample Volume (mL):	LACCC ML		
Clarity (ex. Clear, Cloudy, Silty):	(Judy		
Color (ex. Clear, Gray, Tan, Brown, Black):	aren		
QA/QC Sample ID:	3 2	-103	(Time: 1200)

Subsample Information										
Trigger #	Date/Time	Error Message/ Subsample Result	Trigger #	Date/Time	Error Message/ Subsample Result					
1	3/28/24 0336	Success	13	401	Success					
2	1 338	ł	14	404404407	1					
3	340	رويه ودة دانه	15	407410	er - 0 111-00-00					
4	342		16	410 414						
5	344	1921-1921-1921-1921-1921-1921-1921-1921	17	414419						
6	346	11 the 1 the 1	18	419425						
7	348		19	425 L	4 44 8 44 4					
8	350		20	433						
9	352	- 72- 72- 73- 74- 73- 74- 75- 74- 75- 75- 75- 75- 75- 75- 75- 75- 75- 75	21	442						
10	354	- 194 (see) - 1	22	449						
11	306	-	23	453	***					
12	358	V	24	456	\checkmark					

Comments:

Date/Time Off-Site:

323 5:26

If sampling is complete:

- D Power off sampler, if separate from flowmeter
- Keep flowmeter running
- Add ice to sample transport cooler

If continuing sampling (sample bottle change-out): 🔀 Keep flowmeter running 🗷 Install new 15L bottle; add ice 🖾 Restart program from beginning 31:4 Date/Time Restarted: ____ **L**, Verify running

Bottle

	100 C 100 C 100 C		Liquid Height	s. Approxim	ate Sample Vol	ume Convers	sion Chart	State 1	
Liquid	Sample	Liquid	Sample	Liquid	Sample	Liquid	Sample	Liquid	Sample
Height	Volume	Height	Volume	Height	Volume	Height	Volume	Height	Volume
0.5"	400 mL	3.0"	3500 mL	5.5"	7250 mL	8.0"	11000 mL	10.5"	14750 mL
1.0"	800 mL	3.5"	4250 mL	6.0"	8000 mL	8.5"	11750 mL	11.0"	15500 mL
1.5"	1400 mL	4.0"	5000 mL	6.5"	8750 mL	9.0"	12500 mL	11.5"	16250 mL
2.0"	2000 mL	4.5"	5750 mL	7.0"	9500 mL	9.5"	13250 mL	After 12"	1" = 1500 mL
2.5"	2750 mL	5.0"	6500 mL	7.5"	10250 mL	10.0"	14000 mL	Lab min	8,000 mL

	Main	Composite Sample Collection
STATION:		Bottle of
Personnel:	57, KC	Date/Time On-Site: 3/25/14 150

👿 Halt sampler program							
🔀 Put lid on sample bottle; label sample bottle							
Sample ID:	240328-12	-WC					
Approx Sample Volume (mL):	12500ml						
Clarity (ex. Clear, Cloudy, Silty):	Cloudy						
Color (ex. Clear, Gray, Tan, Brown, Black):	Gray						
QA/QC Sample ID:		-103	(Time: 1200)				

	Subsample Information								
Trigger #	Date/Time	Error Message/ Subsample Result	Trigger #	Date/Time	Error Message/ Subsample Result				
1	3 13 2 526	Success tog	13	3/13/24 1009	Surnell				
2	530		14	1 613	I				
3	534		15	617					
4	538		16	1022					
5	542		17	627					
6	546		18	(033					
7	550		19	Leen					
8	553		20	652					
9	550		21	708					
10	589		22	739	Y				
11	602		23						
12	V 1005	J.	24	1					

Comments:

Date/Time Off-Site:

If sampling is complete:

- D Power off sampler, if separate from flowmeter
- □ Keep flowmeter running
- □ Add ice to sample transport cooler

- If continuing sampling (sample bottle change-out):

 - Keep flowmeter running Install new 15L bottle; add ice
 - N Restart program from beginning Date/Time Restarted: 318/2755
 - □ Verify running
- Liquid Height vs. Approximate Sample Volume Conversion Chart Liquid Sample Liquid Sample Liquid Sample Liquid Sample Liquid Sample Height Volume Height Volume Height Volume Height Volume Height Volume 0.5" 400 mL 3.0" 3500 mL 5.5" 7250 mL 8.0" 11000 mL 10.5" 14750 mL 1.0" 800 mL 3.5" 4250 mL 6.0" 8000 mL 8.5" 11750 mL 11.0" 15500 mL 1.5" 1400 mL 4.0" 5000 mL 6.5" 8750 mL 9.0" 9.5" 12500 mL 11.5" 16250 mL 2.0" 4.5" 2000 mL 5750 mL 7.0" 9500 mL 13250 mL After 12" 1" = 1500 mL 2.5" 2750 mL 5.0" 6500 mL 7.5" 10250 mL 10.0" 14000 mL Lab min 8,000 mL

1

Grab Sample Data Form

Personnel: <u>ICC, ST</u> Date/Time On-Site: <u>3</u> [28/24 1.3]	STATION:	Mein				
	Personnel: _	KC, 57	Date/Time On-Site:	3/28/24	1.31	-

	Flow Meter Current Status									
Time	Level (in)	Flow (cfs)	Velocity (fps)	Battery (V)	Flow Start (date/time)	Rainfall (in)				
131	6.16	394.17	1.21	12.9						
		GPM								

Grab Information								
	Sample ID		Date	Time	Labeled?			
Site <i>E.Coli</i>	240328-12	-WG	3/2/24	0137	Ŕ			
Field Duplicate E.Coli	240328-12	-101	3/23/24	0138	x			
Field Blank <i>E.Coli</i>	2403:28-12	-001	3/28/24	04	لک ۲			

*Note: time on bottle for QC samples is 1200 -

Field Parameters							
Meter number	Time	Temp (C)	D.O. (mg/L)	рН (S.U.)	SpCond (uS/cm)		
MFD9	0141	10:91	10.02	7.82	16.08		

	Sampler Current Status					
First Subsample Date/Time	3 27 24 1933					
Last Subsample Date/Time	3/28/24 0130					
# of Subsamples taken	7					

Comments:

Set Up/ Shut Down Form – ISCO (Whitewater, Americana, State)

ET UP Personnel: ST, ICC Date/Time Dn-Site: $3/27/24$ $3.407m$ 16.10 15 Dn-Site	Time 16.12 En	Level (in) 5.99 mable Condition: Hysteresis:	Flow (cfs) ૧૧	Velocity (fps) 2.200	Battery (V)	
Personnel: ST, ICC Date/Time Dn-Site: $3/27/24$ 3.40 Pm 16.10 15	Time	Level (in) 5.99 mable Condition: Hysteresis:	Flow (cfs) I ૧૧	Velocity (fps) 2.200	Battery (V) (2.29	
Date/Time $3/27/24$ 3.40 Pm 16.10 15	16.12 En	5.99 able Condition: Hysteresis:	199	2.200	12.29	
Date/Time Dn-Site: 3/27/24 3-40Pm 46-10 15	En	able Condition: Hysteresis:				
<u>Dn-Site</u>	En Flow	able Condition: Hysteresis:				
<u>Dn-Site</u>	Flow	Hysteresis:				
<u>On-Site</u>	Flow					
<u>On-Site</u>		v Pulse Interval:				
 Leave bottle lid at site, in a clean re-sealab Set sampler program parameters Check date/time on sampler Verify all cable and tubing connections Verify sampler program is running 	neposite.	X Change D Velocity, Tot ☐ Enable Sa equation ☐ Set Samp volume Set up floc	ata Storage Ra al Flow, and Flo mpler: On Trig ler Pacing to Flo umates C	tes to 1 minute fo ow Rate ger, and set Samp ow Paced, and set why NO. Ca	nr Level, H er Enable Ttrigg er IMy US K	
IUT DOWN						
Personnel: ST	Time	Level (in)	Flow (cfs)	Velocity (fps)	Battery (V)	
	12:36	6.52	2.35	2.299	12.07	
Date/Time 3/29/24 12:35		Downloaded to:	Stevens	USB		
<u>Dn-Site</u> K. Replace flowmeter battery		Flowlink (Refer to	o Flowlink Instr Remote; Date/	uctions, if needed	1)	
Remove battery from sampler		Change Wireless Power Control to Dry Weather Change Data Storage Rates to 15 minutes for Level, Velocity, Total Flow, and Flow Rate				

Composite S	Sample (Collection
-------------	----------	------------

STATION: _	Americana
Personnel:	

Bottle _____ of _____

Date/Time On-Site:

Halt sampler program		
Put lid on sample bottle; label sample bottle		
Sample ID:	WC	
Approx Sample Volume (mL):		
Clarity (ex. Clear, Cloudy, Silty):		
Color (ex. Clear, Gray, Tan, Brown, Black):		
QA/QC Sample ID:	240328 - 14-007,-103 My	(Time: 1200)

Subsample Information							
Trigger #	Date/Time	Error Message/ Subsample Result	Trigger #	Date/Time	Error Message/ Subsample Result		
1			13				
2			14				
3			15				
4			16				
5			17				
6			18				
7			19				
8			20				
9			21				
10			22				
11			23				
12			24				
Comments:	QC Blank	filled at 3/27/24	1510 - 15	14. Removed	1 at 10:08		

If sampling is complete:

- Power off sampler, if separate from flowmeter
- □ Keep flowmeter running
- □ Add ice to sample transport cooler

- If continuing sampling (sample bottle change-out):
 - □ Keep flowmeter running
 - □ Install new 15L bottle; add ice
 - □ Restart program from beginning
 - Date/Time Restarted: _____
 - □ Verify running

Liquid Height vs. Approximate Sample Volume Conversion Chart									
Liquid	Sample	Liquid	Sample	Liquid	Sample	Liquid	Sample	Liquid	Sample
Height	Volume	Height	Volume	Height	Volume	Height	Volume	Height	Volume
0.5"	400 mL	3.0"	3500 mL	5.5"	7250 mL	8.0"	11000 mL	10.5"	14750 mL
1.0"	800 mL	3.5"	4250 mL	6.0"	8000 mL	8.5"	11750 mL	11.0"	15500 mL
1.5"	1400 mL	4.0"	5000 mL	6.5"	8750 mL	9.0"	12500 mL	11.5"	16250 mL
2.0"	2000 mL	4.5"	5750 mL	7.0"	9500 mL	9.5"	13250 mL	After 12"	1" = 1500 mL
2.5"	2750 mL	5.0"	6500 mL	7.5"	10250 mL	10.0"	14000 mL	Lab min	8,000 mL

Grab Sample Data Form

	A. in
STATION:	Ameniana

Personnel: KC,5T Date/Time On-Site: 2/18/14 0153

Flow Meter Current Status								
Time	Level (in)	Flow (cfs)	Velocity (fps)	Battery (V)	Flow Start (date/time)	Rainfall (in)		
b156	9.94	6:33	3.368	12.06				

Grab Information							
	Sample ID		Date	Time	Labeled?		
Site E.Coli	240328 - 14	-WG	3/28/24	0159	X		
Field Duplicate E.Coli		-101					
Field Blank E.Coli		-001					

*Note: time on bottle for QC samples is 1200

Field Parameters							
Meter number	Time	Temp (C)	D.O. (mg/L)	рН (S.U.)	SpCond (uS/cm)		
MRDSg	0202	9.79	10.57	7.28	255.40		

Sampler Current Status						
First Subsample Date/Time						
Last Subsample Date/Time						
# of Subsamples taken						

comments: Not collecting composite sample for this suit.

Revised 210924 TL

Set Up/ Shut Down Form – HACH (Lucky, Main, AS_6)

TATION: AS-6		_					
SET UP							
Personnel: VC.ST	Tin	ne Lev	vel (in)	Flow (cfs)	Velocity (fps)	Ba	ittery (V)
	1440	1 0.0	0	D.00	D.00	12.4	{
Date/Time On-Site: 3/27/24 1444							
		Enable Co	ndition or \	/elocity Cutoff:			
				Deadband:			
			Т	rigger Volume:		_	
 Set flowmeter program and sampler program and sampler	ogram parameter: program	nuposite f	or this	site.			
Porconnoli ST	Time	Level (in)	Flow (cf	s) Velocity	(fps) Total ((cf)	Battery (V
	13129	0.000	0.00	0 0,000	> 39.6	08	12.9
Date/Time	Dov	vnloaded to:	Rug	ged			
On-Site: 3/29/24 3:29							
If flow monitoring is complete: Halt program on flowmeter Download flowmeter data Remove flowmeter battery		lf c	Description Image: Constraint of the section of the	o monitor flow: flowmeter batte gging interval to velocity cutoff to ogram inning	ery 15 minutes 0 0.02 fps		×

Comments:

Revised 231009 ML

Grab Sample Data Form

STATION: AS_6 Personnel: KC, ST_____ Date/Time On-Site: 3/28/24 0210

Flow Meter Current Status							
Time	Level (in)	Flow (cfs)	Velocity (fps)	Battery (V)	Rainfall (in) (Whitewater Only)		
0214	6.710	0.46	0.69	12.3	_		

Grab Information							
	Sample ID	Date	Time	Labeled?			
Site E.Coli	240328-206-WG	3/28/24	Z:19	.12			
Field Duplicate E.Coli	-101						
Field Blank E.Coli	-001						

*Note: time on bottle for QC samples is 1200

Field Parameters							
Meter number	Time	Temp (C)	D.O. (mg/L)	рН (S.U.)	SpCond (uS/cm)		
MPOQ	2:25	7.74	9.92	7.60	108.59		

	Sampler Current Status						
First Subsample Date/Time							
Last Subsample Date/Time	_						
# of Subsamples taken							

Comments: NO composite taken at this site.

Date/Time Off-Site: Size lay Zi26

Revised 240123 KC

Attachment D: Storm Event Analytical Reports

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Samples in this Report

Lab ID	Sample	Sample Description	Matrix Qualifiers	Date Sampled	Date Received
AC00338-01	ACST1B	240328-12-WG	Water	03/28/2024	03/28/2024
AC00338-02	ACST1B	240328-12-101	Water	03/28/2024	03/28/2024
AC00338-03	ACST1B	240328-12-001	Water	03/28/2024	03/28/2024
AC00338-04	ACST1B	240328-14-WG	Water	03/28/2024	03/28/2024

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Analysis Report

Location: ACST1B					Location Description:	240328-1	240328-12-WG			
Date/Time Collecte	d: 03/28/2	2024 01:37	7							
Lab Number:	AC003	38-01				Sample Collector:	S.T			
Sample Type:	Grab			:		Sample Matrix:	Water			
Analyte Name	Batch	Result	Units	Adjusted MDL *	Method MDL	Analysis Method Reference	Prepared	Analyzed	Analyst Initials	Qualifier
Vicrobiology E. Coli	B241140	21.6N	1 PN/100 mL	. 1.0	1.0	IDEXX - Colilert	03/28/24 08:46	3/29/24 10:00	KMR	
Net Chemistry Chlorine Screen	B241146	Absent				SM 4500-CL G-2000 mod	03/28/24	3/28/24 8:26	ALM	

* The reported adjusted "MDL" is sample-specific. The analysis MDL as defined by 40 CFR pt 136 App.B. was corrected for dilution, dry weight, or method-defined ML.

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Analysis Report

Location:	ACST1	IB				Location Description:	240328-1	2-101		
Date/Time Collected	I: 03/28/2	2024 12:00				~				
Lab Number:	AC003	38-02				Sample Collector:	S.T			
Sample Type:	Grab					Sample Matrix:	Water			
Analyte Name	Batch	Result	Units	Adjusted MDL *	Method MDL	Analysis Method Reference	Prepared	Analyzed	Analyst Initials	Qualifier
Microbiology E. Coli	B241140	17.3M	PN/100 mL	. 1.0	1.0	IDEXX - Colilert	03/28/24 08:46	3/29/24 10:00	KMR	
Wet Chemistry Chlorine Screen	B241146	Absent				SM 4500-CL G-2000 mod	03/28/24	3/28/24 8:26	ALM	

* The reported adjusted "MDL" is sample-specific. The analysis MDL as defined by 40 CFR pt 136 App.B. was corrected for dilution, dry weight, or method-defined ML.

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Analysis Report

Location:	ACST1	В				Location Description:	240328-1	2-001		
Date/Time Collected	I: 03/28/2	2024 12:00)							
Lab Number:	AC003	38-03				Sample Collector:	S.T			
Sample Type:	Grab					Sample Matrix:	Water			
Analyte Name	Batch	Result	Units	Adjusted MDL *	Method MDL	Analysis Method Reference	Prepared	Analyzed	Analyst Initials	Qualifier
Vicrobiology I. Coli	B241140	<1.0M	IPN/100 mL	. 1.0	1.0	IDEXX - Colilert	03/28/24 08:46	3/29/24 10:00	KMR	U
Net Chemistry Chlorine Screen	B241146	Absent				SM 4500-CL G-2000 mod	03/28/24	3/28/24 8:26	ALM	

* The reported adjusted "MDL" is sample-specific. The analysis MDL as defined by 40 CFR pt 136 App.B. was corrected for dilution, dry weight, or method-defined ML.

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Analysis Report

Location:	ACST1	IB				Location Description:	240328-1	4-WG		
Date/Time Collected	I: 03/28/2	2024 01:59								
Lab Number:	AC003	38-04				Sample Collector:	S.T			
Sample Type:	Grab					Sample Matrix:	Water			
Analyte Name	Batch	Result	Units	Adjusted MDL *	Method MDL	Analysis Method Reference	Prepared	Analyzed	Analyst Initials	Qualifier
Microbiology E. Coli	B241140	365.4 M	PN/100 mL	1.0	1.0	IDEXX - Colilert	03/28/24 08:46	3/29/24 10:00	KMR	
Wet Chemistry Chlorine Screen	B241146	Absent				SM 4500-CL G-2000 mod	03/28/24	3/28/24 8:26	ALM	

* The reported adjusted "MDL" is sample-specific. The analysis MDL as defined by 40 CFR pt 136 App.B. was corrected for dilution, dry weight, or method-defined ML.

Quality Control Report

Analyte Name	Method Blank	Units	% Recovery	Recovery Limits	RPD	RPD Limit	Analyzed	Analyst Initials	Qualifier
licrobiology									
Batch: B241140 Blank (B241140-BLK1) E. Coli	Absent						03/29/2024	KMR	
LCS (B241140-BS1) E. Coli				Present			03/29/2024	KMR	
Duplicate (B241140-DUP1) E. Coli	Source ID: LS01	907-10			Pass	128	03/29/2024	KMR	

Notes and Definitions

ltem	Definition
U	Analyte included in the analysis, but not detected

Method Reference Acronyms

Colilert, IDEXX Laboratories, Inc.
Manual of Methods for Chemical Analysis of Water and Wastes, USEPA
USGS Techniques of Water-Resources Investigations
Hach Spectrophotometer Procedures Manual
Standard Methods for the Examination of Water and Wastewater
Test methods for Evaluating Solid Waste, SW-846

Stephen Quintero or Azubike Emenari QA/QC Coordinator

Kate Harris Interim Water Quality Laboratory Manager

	Ada Co	ounty Hig	ghway	District	· · · · · · · · · · · · · · · · · · ·					_	1														
	Attn: Ste 3775 Ada Garden (Tel. (208 Fax (208 Purchase Project: Sampler(ven Turner ams Street City, Idaho) 387–6269) 387–639 e Order: s):	83714–6 9 1	418 630656 Stormy Krister Stever	3 63065628 Stormwater-PI Listen Chishalm Steven Turner				Ту		0B	00		U	2		- EPA 365.1	- EPA 200.8	, Zn - EPA 200.8	245.2	Colliert 180.1	\ 200.7	A 353.2	VH3- D	
	Lab#	Begin Date	End Date	Begin Time	End Time	Sample Identification	Sampler Initials	Water	Grab	Composite	BOD ₅ - SM 521	COD - Hach 800	TSS - SM 2540	TDS - SM 2540	TKN - EPA 351	TP - EPA 200.7	Orthophosphate	Total As, Cd, Pb	Diss. Cd Cu, Pb	Total Hg - EPA	Turbidity - EPA	Hardness - EPA	NO3+NO2 - EP/	NH ₃ - SM 4500 h	Total Containers
op	338-01	3/28/24	+	0137		240528-12-WG	ST	X	×											X	,				V
	-02	3/28/24		1200		240328 - 12 - 101	ST	X	×											×	•)
	- 03	3/28/24		1200		240328-12-001	ST	+	4											X					1
	-04	3/23/24		0159		240328 - 14 - WG	ST	×	4											ł					<u>\</u>
	Relinqui	shed by (s	sign)	Date Trar	e & Time Isferred	Received by (sign)				C	om	me	ents	/Sp	eci	al I	nst	ruc	tion	is:]
1	Snust l	hish		3/28/2	, <u>z.</u> 08	514 August 3/26/	0516																		

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Samples in this Report

Lab ID	Sample	Sample Description	Matrix	Qualifiers	Date Sampled	Date Received
AC00339-01	ACST1B	240328-206-WG	Water		03/28/2024	03/28/2024

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Analysis Report

Location:	ACST1	IB				Location Description:	240328-2	06-WG		
Date/Time Collected	d: 03/28/2	2024 02:19	9							
Lab Number:	AC003	39-01				Sample Collector:	S.T			
Sample Type:	Grab					Sample Matrix:	Water			
Analyte Name	Batch	Result	Units	Adjusted MDL *	Method MDL	Analysis Method Reference	Prepared	Analyzed	Analyst Initials	Qualifier
Vicrobiology I. Coli	B241140	387.3 N	1PN/100 mL	. 1.0	1.0	IDEXX - Colilert	03/28/24 08:46	3/29/24 10:00	KMR	
Net Chemistry Chlorine Screen	B241146	Absent		· ·		SM 4500-CL G-2000 mod	03/28/24	3/28/24 8:26	ALM	

* The reported adjusted "MDL" is sample-specific. The analysis MDL as defined by 40 CFR pt 136 App.B. was corrected for dilution, dry weight, or method-defined ML.

Quality Control Report

Analyte Name	Method Blank Units	% s Recovery	Recovery Limits	RPD	RPD Limit	Analyzed	Analyst Initials	Qualifier
Microbiology								
Batch: B241140 Blank (B241140-BLK1) E. Coli	Absent					03/29/2024	KMR	
LCS (B241140-BS1) E. Coli			Present			03/29/2024	KMR	
Duplicate (B241140-DUP1) E. Coli	Source ID: LS01907-1	0		Pass	128	03/29/2024	KMR	

Notes and Definitions

tem Definition

'o notes entered.

lethod Reference Acronyms

Colilert	Colilert, IDEXX Laboratories, Inc.
EPA	Manual of Methods for Chemical Analysis of Water and Wastes, USEPA
GS	USGS Techniques of Water-Resources Investigations
HH	Hach Spectrophotometer Procedures Manual
SM	Standard Methods for the Examination of Water and Wastewater
SW	Test methods for Evaluating Solid Waste, SW-846

C

Stephen Quintero or Azubike Emenari QA/QC Coordinator

Kate Harris Interim Water Quality Laboratory Manager

he contents of this report apply to the sample(s) analyzed in accordance with the Chain of Custody document to duplication of this report is allowed, except in its entirety

Ada Co	ounty Hig	hway [District											4					2011000				ini - norma
Attn: Stev 3775 Ada Garden C Tel. (208 Fax (208 Purchase Project: Sampler(ven Turner ams Street >ity, Idaho 8) 387–6269) 387–6391 e Order: (s):	371464	630656 Stormw Kvister Steven	i28 vater-PI Chush TVM	cilm ex		S	Matrix	Тур	De	10 B	000	00	0 C	7	te - EPA 365.1	^b b - EPA 200.8	^b , Zn - EPA 200.8	A 245.2	A Colliert A 180.1	PA 200.7	PA 353.2	D NH ₃ - D srs
Lab#	Begin Date	End Date	Begin Time	End Time		Sample Identification	Sampler Initia	Water	Grab	Composite	BOD ₅ - SM 52	COD - Hach 8	TSS - SM 254	TDS - SM 254	TP - EPA 200.	Orthophospha	Total As, Cd, F	Diss. Cd Cu, P	Total Hg - EP	Turbidity - EP	Hardness - EF	NO3+NO2 - E	NH ₃ - SM 4500 Total Containe
x 339-01	328/24		0219		2403	328-206-WG			*										*				1
Relingu Kristi	ished by (s	sign)	Date Trai 3/28/2	₽ & Tim nsferred 408/4	9 3 //	Received by (sign)	14			C	l Com	ime	nts	/Spe		Ins	truc	;tior	ns:				

ACO0339 Ar 1575329

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Samples in this Report

Lab ID	Sample	Sample Description	Matrix	Qualifiers	Date Sampled	Date Received
AC00341-01	ACST1C	240328-11-WC	Water		03/28/2024	03/28/2024

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Analysis Report

Location:	ACST1	IC				Location Description:	240328-1	1-WC		
Date/Time Collected	l: 03/27/2	2024 20:07	7 - 03/28/	2024 11:33						
Lab Number:	AC003	41-01				Sample Collector:	K.C			
Sample Type:	Compo	osite				Sample Matrix:	Water			
Analyte Name	Batch	Result	Units	Adjusted MDL *	l Method MDL	Analysis Method Reference	Prepared	Analyzed	Analyst Initials	Qualifier
Net Chemistry						· · · · ·				
mmonia, as N	B241161	0.236	mg/L	0.0450	0.0450	Timberline Ammonia-001	03/29/24	3/29/24 11:19	ALN	
IOD5	B241168	8.20	mg/L	2.00	2.00	SM 5210 B-2016	03/29/24	4/3/24 9:59	ALM	
Chloride	B241409	14.9	mg/L	0.0150	0.0150	EPA 300.0, Rev. 2.1 (1993)	04/18/24	4/18/24 15:37	SMC	
;OD	B241167	84.0	mg/L	7.00	7.00	HH 8000, Standard Method 5220 D	03/29/24	3/29/24 9:37	RKT	
litrate-Nitrite, as N	B241189	0.277	mg/L	0.0250	0.0250	EPA 353.2, Rev. 2.0 (1993)	04/01/24	4/1/24 14:29	JAL	
ΚN	B241263	1.63	mg/L	0.100	0.100	EPA 351.2, 10-107-06-2-M (Equivalent)	04/04/24	4/5/24 12:53	EDM	
otal Dissolved Solids	B241163	76.0	mg/L	20.0	20.0	SM 2540 C-2015	03/28/24	3/30/24 15:18	BAK	
otal Suspended Solids	B241172	131	mg/L	0.900	0.900	SM 2540 D-2015	03/29/24	3/29/24 10:10	SMC	
urbidity	B241159	26.2	NTU	0.3	0.3	EPA 180.1, Rev. 2.0 (1993)	03/28/24	3/28/24 14:35	LRF	
Dissolved Wet Ch	emistry									
)rthophosphate, as P	B241173	0.131	mg/L	3.00E-3	3.00E-3	EPA 365.1, Rev. 2.0 (1993)	03/29/24	3/29/24 13:02	JAL	
Fotal Metals										
<i>lercury</i>	B241233	0.0151	ug/L	0.0100	0.0100	EPA 245.1	04/04/24	4/5/24 7:58	SAS	
vrsenic	B241177	2.0	ug/L	0.070	0.070	EPA 200.8	04/13/24	4/14/24 17:54	DMW	
Cadmium	B241177	0.074	ug/L	0.010	0.010	EPA 200.8	04/13/24	4/14/24 17:54	DMW	
alcium	B241226	7.94	mg/L	0.0400	0.0400	EPA 200.7	04/03/24	4/11/24 17:34	EDM	
.ead	B241177	5.8	ug/L	0.010	0.010	EPA 200.8	04/13/24	4/14/24 17:54	DMW	
<i>l</i> agnesium	B241226	2930	ug/L	80.0	80.0	EPA 200.7	04/03/24	4/11/24 17:34	EDM	
'hosphorus as P	B241226	0.318	mg/L	0.0120	0.0120	EPA 200.7	04/03/24	4/11/24 17:34	EDM	
lardness	B241226	31.9	mg/L	0.100	0.100	SM 2340 B-2011	04/03/24	4/11/24 17:34	EDM	
Dissolved Metals						1.11 - 5				
)admium	B241178	<0.0100	ug/L	0.010	0,010	EPA 200.8	04/04/24	4/4/24 16:00	DMW	U
)opper	B241178	1.9	ug/L	0.15	0.15	EPA 200.8	04/04/24	4/4/24 16:00	DMW	
.ead	B241178	0.097	ug/L	9.00E-3	9.00E-3	EPA 200.8	04/04/24	4/4/24 16:00	DMW	
linc	B241178	9.8	ug/L	0.50	0.50	EPA 200.8	04/04/24	4/4/24 16:00	DMW	

* The reported adjusted "MDL" is sample-specific. The analysis MDL as defined by 40 CFR pt 136 App.B. was corrected for dilution, dry weight, or method-defined ML.

Quality Control Report

Analyte Name	Method Blank	Units	% Recovery	Recovery Limits	RPD	RPD Limit	Analyzed	Analyst Initials	Qualifier
Wet Chemistry									
Batch: B241159 Blank (B241159-BLK1)									
Turbidity	<0.3	NTU					03/28/2024	LRF	U
LCS (B241159-BS1) Turbidity			102	90-110			03/28/2024	LRF	
Duplicate (B241159-DUP1) Turbidity	Source ID: AC00)340-01			0.809	25	03/28/2024	LRF	
Batch: B241161 Blank (B241161-BLK1)							00/00/0004		
Ammonia, as N	<0.045	mg/L					03/29/2024	ALN	U
Blank (B241161-BLK2) Ammonia, as N	<0.045	mg/L					03/29/2024	ALN	U
LCS (B241161-BS1) Ammonia, as N			99.1	87-104			03/29/2024	ALN	
Duplicate (B241161-DUP1) Ammonia, as N	Source ID: WB0	3028-08			0.615	20	03/29/2024	ALN	D
Matrix Spike (B241161-MS1) Ammonia, as N	Source ID: WE	803028-08	101	84-115			03/29/2024	ALN	D
Matrix Spike (B241161-MS2) Ammonia, as N	Source ID: EP	00320-01	101	84-115			03/29/2024	ALN	
Matrix Spike (B241161-MS3) Ammonia, as N	Source ID: AC	00341-01	102	84-115			03/29/2024	ALN	
Matrix Spike Dup (B241161-I Ammonia, as N	MSD1) Source	ID: WB030	28-08 99.6	84-115	0.840	20	03/29/2024	ALN	D
Batch: B241163									
Total Dissolved Solids	<20	mg/L					03/30/2024	BAK	U
LCS (B241163-BS1) Total Dissolved Solids			99.3	90-110			03/30/2024	BAK	
Duplicate (B241163-DUP1) Total Dissolved Solids	Source ID: RW0	0064-08			7.62	10	03/30/2024	BAK	(1115),"

Quality Control Report

Analyte Name	N	/lethod Blank	Units	% Recovery	Recovery Limits	RPD	RPD Limit	Analyzed	Analyst Initials	Qualifier
Net Chemistry (Conti	nued)									
3atch: B241167 Blank (B241167-BLK1)	-									
COD		<7	mg/L					03/29/2024	RKT	U
LCS (B241167-BS1) COD				98.3	90-110			03/29/2024	RKT	
Duplicate (B241167-DUP1) COD	Source I	D: AC00	0341-01			3.64	10	03/29/2024	RKT	
Batch: B241168 Blank (B241168-BLK1) BOD5		<2	ma/L					04/03/2024	ALM	U
LCS (B241168-BS1) BOD5				103	84.6-115.4			04/03/2024	ALM	
LCS (B241168-BS2) BOD5				106	84.6-115.4			04/03/2024	ALM	
Duplicate (B241168-DUP1) BOD5	Source I	D: LS01	908-02			3.16	30	04/03/2024	ALM	
Satch: B241172 Blank (B241172-BLK1) Total Suspended Solids		<0.9	ma/L					03/29/2024	SMC	U
LCS (B241172-BS1) Total Suspended Solids				91.2	90-110			03/29/2024	SMC	_
Duplicate (B241172-DUP1) Total Suspended Solids	Source I	D: LS01	908-02			0.951	20	03/29/2024	SMC	
Batch: B241189 Blank (B241189-BLK1)										
Nitrate-Nitrite, as N		<0.025	mg/L					04/01/2024	JAL	U
LCS (B241189-BS1) Nitrate-Nitrite, as N				96.2	90-110			04/01/2024	JAL	
Duplicate (B241189-DUP1) Nitrate-Nitrite, as N	Source I	D: AC00)340-01			2.37	10	04/01/2024	JAL	
Matrix Spike (B241189-MS1) Nitrate-Nitrite, as N	Source	e ID: AC	00340-01	97.6	90-110			04/01/2024	JAL	
Matrix Spike Dup (B241189-I Nitrate-Nitrite, as N	MSD1)	Source	ID: AC003	340-01 96.8	90-110	0.678	10	04/01/2024	JAL	

Quality Control Report (Continued)

Analyte Name	252	Method Blank	Units	% Recovery	Recovery Limits	RPD	RPD Limit	Analyzed	Analyst Initials	Qualifier
Wet Chemistry (Contir	nued)									
Batch: B241263										
Blank (B241263-BLK1) TKN		<0.1	mg/L					04/05/2024	EDM	U
Blank (B241263-BLK2) TKN		<0.1	mg/L					04/05/2024	EDM	U
LCS (B241263-BS1) TKN				98.7	80-120			04/05/2024	EDM	
LCS (B241263-BS2) TKN				95.9	80-120			04/05/2024	EDM	
Duplicate (B241263-DUP1) TKN	Source	ID: ACO	0341-01			4.82	20	04/05/2024	EDM	
Duplicate (B241263-DUP2) TKN	Source	ID: RW0	0065-02			0.416	20	04/05/2024	EDM	D
Duplicate (B241263-DUP3) TKN	Source	ID: RW0	0065-07			3.97	20	04/05/2024	EDM	D
Matrix Spike (B241263-MS1) TKN	Sourc	e ID: AC	00341-01	102	80-120			04/05/2024	EDM	
Matrix Spike (B241263-MS2) TKN	Sourc	e ID: RW	/00065-02	101	80-120			04/05/2024	EDM	D
Matrix Spike (B241263-MS3) TKN	Sourc	e ID: RW	/00065-07	88.7	80-120			04/05/2024	EDM	D
Matrix Spike Dup (B241263-I TKN	MSD1)	Source	ID: AC0034	1-01 97.7	80-120	3.03	20	04/05/2024	EDM	
Matrix Spike Dup (B241263-I TKN	MSD2)	Source	ID: RW0006	65-02 98.7	80-120	1.20	20	04/05/2024	EDM	D
Matrix Spike Dup (B241263-I TKN	MSD3)	Source	ID: RW0000	65-07 95.8	80-120	3.01	20	04/05/2024	EDM	D
Batch: B241409										
Blank (B241409-BLK1) Chloride		<0.015	mg/L					04/18/2024	SMC	U
Blank (B241409-BLK2) Chloride		<0.015	mg/L					04/19/2024	SMC	U
Blank (B241409-BLK3) Chloride		<0.015	mg/L					04/19/2024	SMC	U
LCS (B241409-BS1) Chloride				96.8	90-110			04/18/2024	SMC	
LCS (B241409-BS2) Chloride				96.2	90-110			04/18/2024	SMC	
LCS (B241409-BS3) Chloride				96.3	90-110			04/19/2024	SMC	

The contents of this report apply to the sample(s) analyzed in accordance with the Chain of Custody document. No duplication of this report is allowed, except in its entirety

Quality Control Report

Analyte Name	Metho Blank	d Units	% Recovery	Recovery Limits	RPD	RPD Limit	Analyzed	Analyst Initials	Qualifier
Vet Chemistry (Contir	nued)							·	
latch: B241409 (Continue	ed)								
Duplicate (B241409-DUP1) Chloride	Source ID: AC	00340-01			0,0752	10	04/18/2024	SMC	
Duplicate (B241409-DUP2) Chloride	Source ID: RV	V00065-13			0.328	10	04/18/2024	SMC	D
Duplicate (B241409-DUP4) Chloride	Source ID: RV	V00069-11			0.239	10	04/19/2024	SMC	
Duplicate (B241409-DUP5) Chloride	Source ID: RV	V00070-08			0.923	10	04/19/2024	SMC	D
Duplicate (B241409-DUP6) Chloride	Source ID: RV	V00067-10RE1			0.341	10	04/20/2024	SMC	D
Matrix Spike (B241409-MS1) Chloride	Source ID: A	C00340-01	97.9	90-110			04/18/2024	SMC	
Matrix Spike (B241409-MS2) Chloride	Source ID: F	RW00065-13	96.8	90-110			04/18/2024	SMC	D
Matrix Spike (B241409-MS4) Chloride	Source ID: F	W00069-11	98.8	90-110			04/19/2024	SMC	
Matrix Spike (B241409-MS5) Chloride	Source ID: F	W00070-08	98.2	90-110			04/19/2024	SMC	D
Matrix Spike (B241409-MS6) Chloride	Source ID: F	W00067-10R	E1 95.5	90-110			04/20/2024	SMC	D
Matrix Spike Dup (B241409-M Chloride	MSD1) Sourc	e ID: AC00340)-01 97.9	90-110	0.0119	10	04/18/2024	SMC	
Matrix Spike Dup (B241409-N Chloride	MSD2) Sourc	e ID: RW0006	5-13 97.0	90-110	0.105	10	04/19/2024	SMC	D
Matrix Spike Dup (B241409-M Chloride	MSD4) Sourc	e ID: RW0006	9-11 99.6	90-110	0.708	10	04/19/2024	SMC	
Matrix Spike Dup (B241409-M Chloride	MSD5) Sourc	e ID: RW0007	0-08 98.8	90-110	0.380	10	04/19/2024	SMC	D
Matrix Spike Dup (B241409-M Chloride	(ISD6) Sourc	e ID: RW0006	7-10RE1 96.6	90-110	0.595	10	04/20/2024	SMC	D

Quality Control Report (Continued)

Analyte Name	Method Blank	Units	% Recovery	Recovery Limits	RPD	RPD Limit	Analyzed	Analyst Initials	Qualifier
Dissolved Wet Chemis	stry								
Batch: B241173	-								
Blank (B241173-BLK1) Orthophosphate, as P	<0.003	mg/L					03/29/2024	JAL	U
Blank (B241173-BLK2) Orthophosphate, as P	<0.003	mg/L					03/29/2024	JAL	U
LCS (B241173-BS1) Orthophosphate, as P			97.4	90-110			03/29/2024	JAL	
LCS (B241173-BS2) Orthophosphate, as P			98.8	90-110			03/29/2024	JAL	
Duplicate (B241173-DUP1) Orthophosphate, as P	Source ID: AC00)340-01			0.151	10	03/29/2024	JAL	
Duplicate (B241173-DUP2) Orthophosphate, as P	Source ID: RW0	0064-08			0.870	10	03/29/2024	JAL	D
Duplicate (B241173-DUP3) Orthophosphate, as P	Source ID: WB0	3032-06			0.481	10	03/29/2024	JAL	D
Matrix Spike (B241173-MS1) Orthophosphate, as P	Source ID: AC	00340-01	99.1	90-110			03/29/2024	JAL	
Matrix Spike (B241173-MS2) Orthophosphate, as P	Source ID: RW	/00064-08	99.9	90-110			03/29/2024	JAL	D
Matrix Spike (B241173-MS3) Orthophosphate, as P	Source ID: WE	303032-06	99.8	90-110			03/29/2024	JAL	D
Matrix Spike Dup (B241173-M Orthophosphate, as P	MSD1) Source	ID: AC0034	0-01 98.4	90-110	0.459	10	03/29/2024	JAL	
Matrix Spike Dup (B241173-M Orthophosphate, as P	MSD2) Source	ID: RW0006	64-08 101	90-110	0.438	10	03/29/2024	JAL	D
Matrix Spike Dup (B241173-M Orthophosphate, as P	MSD3) Source	ID: WB0303	32-06 101	90-110	0.301	10	03/29/2024	JAL	D

Quality Control Report

Analyte Name	Method Blank	Units	% Recovery	Recovery	RPD	RPD Limit	Analyzed	Analyst	Qualifier
Total Metals		••••••		4		Linit	Analyzeu	mitiais	Quanner
Satch: B241177									
Blank (B241177-BLK1)									
Arsenic	<0.070	ug/L					04/14/2024	DMW	U
Cadmium	<0.010	ug/L					04/14/2024	DMW	U
Lead	<0.010	ug/L					04/14/2024	DMW	U
LCS (B241177-BS1)									
Arsenic			101	85-115			04/14/2024	DMW	
Lood			102	85-115			04/14/2024	DMW	
Lead			103	85-115			04/14/2024	DMW	
Duplicate (B241177-DUP1)	Source ID: ES00	308-04							
Cadmium					1.20	20	04/14/2024	DMW	
Lead					NR 0.466	20	04/14/2024		0
Metric Online (D044477 M04)	0		2011		0.400	20	04/14/2024	DIVIVV	
Arsenic	Source ID: ESU	0308-04	100	70,130			04/14/2024		
Cadmium			100	70-130			04/14/2024		
Lead			101	70-130			04/14/2024	DMW	
Matrix Spike Dup (B241177-M	(SD1) Source (8-04					A REAL PROPERTY AND	
Arsenic		D. 200000	101	70-130	0.462	20	04/14/2024	DMW	
Cadmium			102	70-130	1.01	20	04/14/2024	DMW	
Lead			101	70-130	0.120	20	04/14/2024	DMW	
Batch: B241226									
Blank (B241226-BLK1)									
Calcium	<0.04	mg/L					04/11/2024	EDM	U
Magnesium	<80	ug/L					04/11/2024	EDM	U
Phosphorus as P	<0.012	mg/L					04/11/2024	EDM	U
LCS (B241226-BS1)									
Calcium			98.9	85-115			04/11/2024	EDM	
Magnesium			101	85-115			04/11/2024	EDM	
			102	85-115			04/11/2024	EDM	
Duplicate (B241226-DUP1)	Source ID: AC00	341-01							
Calcium Magnosium					1.81	20	04/11/2024	EDM	
Phosphorus as P					1.16	20	04/11/2024		
					2.21	20	04/11/2024	EDIVI	
Calcium	Source ID: ACC	00341-01	100	70 120			04/11/2024	CD14	
Magnesium			100	70-130			04/11/2024	EDM	
Phosphorus as P			101	70-130			04/11/2024	EDM	
Matrix Spike Dup (8241226 M	ASD1) Source I		1_01						
Calcium		D. AU0034	102	70-130	1.34	20	04/11/2024	EDM	
Magnesium			103	70-130	0.658	20	04/11/2024	EDM	
Phosphorus as P			103	70-130	1.62	20	04/11/2024	EDM	

he contents of this report apply to the sample(s) analyzed in accordance with the Chain of Custody document. In duplication of this report is allowed, except in its entirety

Analyte Name	Method Blank	Units	% Recovery	Recovery Limits	RPD	RPD Limit	Analyzed	Analyst Initials	Qualifier
Total Metals (Continue	ed)								
Batch: B241233 Blank (B241233-BLK1) Mercury	<0.01	ug/L					04/05/2024	SAS	U
LCS (B241233-BS1) Mercury			104	85-115			04/05/2024	SAS	
Duplicate (B241233-DUP1) Mercury	Source ID: AC0	0340-01			47.0	20	04/05/2024	SAS	QC-02
Duplicate (B241233-DUP2) Mercury	Source ID: BB03	3721-01			NR	20	04/05/2024	SAS	U
Matrix Spike (B241233-MS1) Mercury	Source ID: AC	00340-01	97.8	70-130			04/05/2024	SAS	
Matrix Spike (B241233-MS2) Mercury	Source ID: BB	03721-01	101	70-130			04/05/2024	SAS	
Matrix Spike (B241233-MS3) Mercury	Source ID: EP	00317-02RE	E1 75.9	70-130			04/05/2024	SAS	D
Matrix Spike Dup (B241233- Mercury	MSD1) Source	ID: AC0034	0-01 91.3	70-130	5.80	20	04/05/2024	SAS	
Matrix Spike Dup (B241233- Mercury	MSD2) Source	ID: BB0372	1-01 102	70-130	1.06	20	04/05/2024	SAS	

	Method		%	Recovery		RPD		Analyst	
Analyte Name	Blank	Units	Recovery	Limits	RPD	Limit	Analyzed	Initials	Qualifier
Dissolved Metals									
3atch: B241178									
Blank (B241178-BLK1)									
Cadmium	<0.010	ug/L					04/04/2024	DMW	U
Copper	<0.15	ug/L					04/04/2024	DMW	U
Lead	<0.0090	ug/L					04/04/2024	DMW	U
Zinc	<0.50	ug/L					04/04/2024	DMW	U
LCS (B241178-BS1)									
Cadmium			99.9	85-115			04/04/2024	DMW	
Copper			93.2	85-115			04/04/2024	DMW	
Lead			99.4	85-115			04/04/2024	DMW	
Zinc			94.5	85-115			04/04/2024	DMW	
Duplicate (B241178-DUP1) Source	D: ACO	340-01							
Cadmium					NR	10	04/04/2024	DMW	U
Copper					0.527	10	04/04/2024	DMW	
Lead					2.01	10	04/04/2024	DMW	
Zinc					1.59	10	04/04/2024	DMW	
Matrix Spike (B241178-MS1) Sour	ce ID: AC	00340-01							
Cadmium			102	70-130			04/04/2024	DMW	
Copper			91.6	70-130			04/04/2024	DMW	
Lead			98.4	70-130			04/04/2024	DMW	
Zinc			91.2	70-130			04/04/2024	DMW	
Matrix Spike Dup (B241178-MSD1)	Source	D: AC0034	40-01						
Cadmium			102	70-130	0.490	10	04/04/2024	DMW	
Copper			91.9	70-130	0.188	10	04/04/2024	DMW	
Lead			98.3	70-130	0.146	10	04/04/2024	DMW	
Zinc			89.8	70-130	0.970	10	04/04/2024	DMW	

Notes and Definitions

ltem	Definition
D	Data reported from a dilution
QC-02	The RPD is greater than the method acceptance criteria. At least one of the values used to calculate the RPD, is less than or equal to the PQL.
U	Analyte included in the analysis, but not detected

Method Reference Acronyms

- Colilert Colilert, IDEXX Laboratories, Inc.
- EPA Manual of Methods for Chemical Analysis of Water and Wastes, USEPA
- GS USGS Techniques of Water-Resources Investigations
- HH Hach Spectrophotometer Procedures Manual
- SM Standard Methods for the Examination of Water and Wastewater
- SW Test methods for Evaluating Solid Waste, SW-846

Stephen Quintero or Azubike Emenari QA/QC Coordinator

Kate Harris Intering Water Quality Laboratory Manager

Ada Cour	nty High	way Di	strict							1							A.	C - C				
Attn: Steven	Turner						Matrix	Ту	pe									300				
3775 Adams Garden City Tel. (208) 38 Fax (208) 38 Purchase Or Project: Sampler(s):	S Street , Idaho 83 376269 376391 -der:	714–641	8 630656 Stormy Kust	isholm ner	w				08	00		.2		e - EPA 365.1	- EPA 200.8	v. Zh - EPA ZUU.8	CONTRAT ('ALUVICLE'S CPA	180.1	A 200.7 ~ / / /	NH3- D		
Lab#	Begin Date	End Date	Begin Time	End Time	Sample Identification	Sampler Initia	Water	Grab	Composite	BOD ₅ - SM 52'	COD - Hach 80	TDS - SM 2540 TDS - SM 2540	TKN - EPA 351	TP - EPA 200.7	Orthophosphate	Total As, Cd, PI	Total Hg - EP/	E. Coli - IDEXX	Turbidity - EPA	NO.+NO. EP	NH3 - SM 4500	Total Containers
Acco341-01	3/27/24	3/28/24	2007	1133	240328-11-WC	XC	×		X	X	K Y	~ 7	×	X	×,	(7	- K	X	XX	×	×	8
Relinqu	ished by	(sign)	Da Tr	ate & Tin ansferre	Received by (sign)					Con	nme	nts/	Spe	cia	Ins	truc	tion	s:				
/ shiste	Chis	hl	3/28/	24 12	3/4 Jul 2/26/24 12	,14																

AC 0034) C-377

Report Date: 05/02/2024 14:37

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Samples in this Report

Lab ID	Sample	Sample Description	Matrix	Qualifiers	Date Sampled	Date Received
AC00340-01	ACST1C	240328-12-WC	Water		03/28/2024	03/28/2024
AC00340-02	ACST1C	240328-14-002	Water		03/28/2024	03/28/2024

Report Date: 05/02/2024 14:37

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Analysis Report

Location: Date/Time Collected	ACST ² I: 03/27/2	1C 2024 19:33	3 - 03/28/	2024 07:39)	Location Description:	: 240328-12-WC					
Lab Number:	AC003	40-01				Sample Collector:	K.C					
Sample Type:	Compo	osite				Sample Matrix:	Water					
Analyte Name	Batch	Result	Units	Adjusted MDL *	l Method MDL	Analysis Method Reference	Prepared	Analyzed	Analyst Initials	Qualifier		
Net Chemistry												
mmonia, as N	B241161	0.293	mg/L	0.0450	0.0450	Timberline Ammonia-001	03/29/24	3/29/24 11:29	ALN			
BOD5	B241168	5.03	mg/L	2.00	2.00	SM 5210 B-2016	03/29/24	4/3/24 10:05	ALM			
Chloride	B241409	5.19	mg/L	0.0150	0.0150	EPA 300.0, Rev. 2.1 (1993)	04/18/24	4/18/24 13:51	SMC			
COD	B241167	104	mg/L	7.00	7.00	HH 8000, Standard Method 5220 D	03/29/24	3/29/24 9:37	RKT			
litrate-Nitrite, as N	B241189	0.151	mg/L	0.0250	0.0250	EPA 353.2, Rev. 2.0 (1993)	04/01/24	4/1/24 14:23	JAL			
̈́ΚΝ	B241263	1.18	mg/L	0.100	0,100	EPA 351.2, 10-107-06-2-M (Equivalent)	04/04/24	4/5/24 12:51	EDM			
otal Dissolved Solids	B241163	44.2	mg/L	20.0	20.0	SM 2540 C-2015	03/28/24	3/30/24 15:17	BAK			
otal Suspended Solids	B241172	91.7	mg/L	0.900	0.900	SM 2540 D-2015	03/29/24	3/29/24 10:11	SMC			
urbidity	B241159	24.6	NTU	0.3	0.3	EPA 180.1, Rev. 2.0 (1993)	03/28/24	3/28/24 14:17	LRF			
Dissolved Wet Ch	emistry											
)rthophosphate, as P	B241173	0.0494	mg/L	3.00E-3	3,00E-3	EPA 365.1, Rev. 2.0 (1993)	03/29/24	3/29/24 12:56	JAL			
Fotal Metals				2010 Control 10								
<i>lercury</i>	B241233	0.0171	ug/L	0.0100	0.0100	EPA 245.1	04/04/24	4/5/24 7:41	SAS			
vrsenic	B241177	1.1	ug/L	0.070	0.070	EPA 200.8	04/13/24	4/14/24 17:49	DMW			
Cadmium	B241177	0.071	ug/L	0.010	0.010	EPA 200.8	04/13/24	4/14/24 17:49	DMW			
alcium	B241226	2.99	mg/L	0.0400	0.0400	EPA 200.7	04/03/24	4/11/24 17:24	EDM			
.ead	B241177	5.9	ug/L	0.010	0.010	EPA 200.8	04/13/24	4/14/24 17:49	DMW			
lagnesium	B241226	1260	ug/L	80.0	80.0	EPA 200.7	04/03/24	4/11/24 17:24	EDM			
'hosphorus as P	B241226	0.145	mg/L	0.0120	0.0120	EPA 200.7	04/03/24	4/11/24 17:24	EDM			
lardness	B241226	12.6	mg/L	0.100	0.100	SM 2340 B-2011	04/03/24	4/11/24 17:24	EDM			
Dissolved Metals												
admium	B241178	<0.0100	ug/L	0.010	0.010	EPA 200.8	04/04/24	4/4/24 15:50	DMW	U		
Copper .	B241178	2.3	ug/L	0,15	0.15	EPA 200.8	04/04/24	4/4/24 15:50	DMW			
ead	B241178	0.068	ug/L	9.00E-3	9.00E-3	EPA 200.8	04/04/24	4/4/24 15:50	DMW			
linc	B241178	14.7	ug/L	0.50	0.50	EPA 200.8	04/04/24	4/4/24 15:50	DMW			

* The reported adjusted "MDL" is sample-specific. The analysis MDL as defined by 40 CFR pt 136 App.B. was corrected for dilution, dry weight, or method-defined ML.

Analysis Report

Location:	ACST	1C				Location Description:	240328-1	4-002		
Date/Time Collected	I: 03/28/	2024 12:00	}							
Lab Number:	AC003	340-02				Sample Collector:	K.C			
Sample Type:	Comp	osite				Sample Matrix:	Water			
Analyte Name	Batch	Result	Units	Adjusted MDL *	Method MDL	Analysis Method Reference	Prepared	Analyzed	Analyst Initials	Qualifier
Wet Chemistry										
Ammonia, as N	B241161	<0.0450	mg/L	0.0450	0.0450	Timberline Ammonia-001	03/29/24	3/29/24 11:26	ALN	U
BOD5	B241168	<2.00	mg/L	2.00	2.00	SM 5210 B-2016	03/29/24	4/3/24 10:05	ALM	U
Chloride	B241409	<0.0150	mg/L	0.0150	0.0150	EPA 300.0, Rev. 2.1 (1993)	04/18/24	4/18/24 17:23	SMC	U
COD	B241167	<7.00	mg/L	7.00	7.00	HH 8000, Standard Method 5220 D	03/29/24	3/29/24 9:37	RKT	U
Nitrate-Nitrite, as N	B241189	<0.0250	mg/L	0.0250	0.0250	EPA 353.2, Rev. 2.0 (1993)	04/01/24	4/1/24 14:28	JAL	U
TKN	B241263	<0.100	mg/L	0.100	0.100	EPA 351.2, 10-107-06-2-M (Equivalent)	04/04/24	4/5/24 12:52	EDM	U
Total Dissolved Solids	B241163	<20.0	mg/L	20.0	20.0	SM 2540 C-2015	03/28/24	3/30/24 15:18	BAK	U
Total Suspended Solids	B241172	<0.900	mg/L	0.900	0.900	SM 2540 D-2015	03/29/24	3/29/24 9:42	SMC	U
Turbidity	B241159	<0.3	NTU	0.3	0.3	EPA 180.1, Rev. 2.0 (1993)	03/28/24	3/28/24 14:43	LRF	U
Dissolved Wet Ch	emistry									
Orthophosphate, as P	B241173	<3.00E-3	mg/L	3.00E-3	3.00E-3	EPA 365.1, Rev. 2.0 (1993)	03/29/24	3/29/24 13:01	JAL	U
Total Metals										
Mercury	B241233	<0.0100	ug/L	0.0100	0.0100	EPA 245.1	04/04/24	4/5/24 7:54	SAS	U
Arsenic	B241177	<0.0700	ug/L	0.070	0.070	EPA 200.8	04/13/24	4/14/24 17:51	DMW	U
Cadmium	B241177	<0.0100	ug/L	0.010	0.010	EPA 200.8	04/13/24	4/14/24 17:51	DMW	U
Calcium	B241226	<0.0400	mg/L	0.0400	0.0400	EPA 200.7	04/03/24	4/11/24 17:31	EDM	U
Lead	B241177	<0.0100	ug/L	0.010	0.010	EPA 200.8	04/13/24	4/14/24 17:51	DMW	U
Magnesium	B241226	<80.0	ug/L	80.0	80.0	EPA 200.7	04/03/24	4/11/24 17:31	EDM	U
Phosphorus as P	B241226	<0.0120	mg/L	0.0120	0.0120	EPA 200.7	04/03/24	4/11/24 17:31	EDM	U
Hardness	B241226	<0.100	mg/L	0.100	0.100	SM 2340 B-2011	04/03/24	4/11/24 17:31	EDM	U
Dissolved Metals										
Cadmium	B241178	<0.0100	ug/L	0.010	0.010	EPA 200.8	04/04/24	4/4/24 15:47	DMW	U
Copper	B241178	<0.150	ug/L	0.15	0.15	EPA 200.8	04/04/24	4/4/24 15:47	DMW	U
Lead	B241178	<9.00E-3	ug/L	9.00E-3	9.00E-3	EPA 200.8	04/04/24	4/4/24 15:47	DMW	U
Zinc	B241178	<0.500	ug/L	0.50	0.50	EPA 200.8	04/04/24	4/4/24 15:47	DMW	U

* The reported adjusted "MDL" is sample-specific. The analysis MDL as defined by 40 CFR pt 136 App.B. was corrected for dilution, dry weight, or method-defined ML.

Analyte Name	Method Blank	Units	% Recovery	Recovery Limits	RPD	RPD Limit	Analyzed	Analyst Initials	Qualifier
Vet Chemistry									
Satch: B241159 Blank (B241159-BLK1) Turbidity	<0.3	NTU					03/28/2024	LRF	U
LCS (B241159-BS1) Turbidity			102	90-110			03/28/2024	LRF	
Duplicate (B241159-DUP1) Turbidity	Source ID: AC00	340-01			0.809	25	03/28/2024	LRF	
3atch: B241161 Blank (B241161-BLK1) Ammonia, as N	<0.045	mg/L					03/29/2024	ALN	U
Blank (B241161-BLK2) Ammonia, as N	<0.045	mg/L					03/29/2024	ALN	U
LCS (B241161-BS1) Ammonia, as N			99.1	87-104			03/29/2024	ALN	
Duplicate (B241161-DUP1) Ammonia, as N	Source ID: WB0	3028-08			0.615	20	03/29/2024	ALN	D
Matrix Spike (B241161-MS1) Ammonia, as N	Source ID: WB	03028-08	101	84-115			03/29/2024	ALN	D
Matrix Spike (B241161-MS2) Ammonia, as N	Source ID: EP(00320-01	101	84-115			03/29/2024	ALN	
Matrix Spike (B241161-MS3) Ammonia, as N	Source ID: AC	00341-01	102	84-115			03/29/2024	ALN	
Matrix Spike Dup (B241161-N Ammonia, as N	(ISD1) Source I	D: WB0302	8-08 99.6	84-115	0.840	20	03/29/2024	ALN	D
Satch: B241163 Blank (B241163-BLK1) Total Dissolved Solids	<20	mg/L					03/30/2024	BAK	U
LCS (B241163-BS1) Total Dissolved Solids			99.3	90-110			03/30/2024	ВАК	
Duplicate (B241163-DUP1) Total Dissolved Solids	Source ID: RW0	0064-08			7.62	10	03/30/2024	BAK	

Analyte Name	Method Blank	Units	% Recovery	Recovery Limits	RPD	RPD Limit	Analyzed	Analyst Initials	Qualifier
Wet Chemistry (Contir	nued)								
Batch: B241167									
Blank (B241167-BLK1) COD	<7	mg/L					03/29/2024	RKT	U
LCS (B241167-BS1) COD			98.3	90-110			03/29/2024	RKT	×.
Duplicate (B241167-DUP1) COD	Source ID: AC00	341-01			3.64	10	03/29/2024	RKT	
Batch: B241168 Blank (B241168-BLK1)	<i>c</i> 2	ma/l					04/03/2024	ALM	U
	~2	ing/L					04/00/2021	, 12101	
BOD5			103	84.6-115.4			04/03/2024	ALM	
LCS (B241168-BS2) BOD5			106	84.6-115.4			04/03/2024	ALM	
Duplicate (B241168-DUP1) BOD5	Source ID: LS01	908-02			3,16	30	04/03/2024	ALM	
Batch: B241172									
Blank (B241172-BLK1) Total Suspended Solids	<0.9	mg/L					03/29/2024	SMC	U
LCS (B241172-BS1) Total Suspended Solids			91.2	90-110			03/29/2024	SMC	
Duplicate (B241172-DUP1) Total Suspended Solids	Source ID: LS01	908-02			0.951	20	03/29/2024	SMC	
Batch: B241189									
Blank (B241189-BLK1) Nitrate-Nitrite, as N	<0.025	mg/L					04/01/2024	JAL	U
LCS (B241189-BS1) Nitrate-Nitrite, as N			96.2	90-110			04/01/2024	JAL	
Duplicate (B241189-DUP1) Nitrate-Nitrite, as N	Source ID: AC00	0340-01			2.37	10	04/01/2024	JAL	
Matrix Spike (B241189-MS1) Nitrate-Nitrite, as N	Source ID: AC	00340-0	1 97.6	90-110			04/01/2024	JAL	
Matrix Spike Dup (B241189-I Nitrate-Nitrite, as N	MSD1) Source	ID: ACO)340-01 96.8	90-110	0.678	10	04/01/2024	JAL	

Quality Control Report

Analyte Name		Method Blank	Units	% Recovery	Recovery Limits	RPD	RPD Limit	Analyzed	Analyst Initials	Qualifier
Net Chemistry (Contin	nued)									
3atch: B241263 Blank (B241263-BLK1) TKN	·	<0.1	mg/L					04/05/2024	EDM	U
Blank (B241263-BLK2) TKN		<0.1	mg/L					04/05/2024	EDM	U
LCS (B241263-BS1) TKN				98.7	80-120			04/05/2024	EDM	
LCS (B241263-BS2) TKN				95.9	80-120			04/05/2024	EDM	
Duplicate (B241263-DUP1) TKN	Source	e ID: AC00)341-01			4.82	20	04/05/2024	EDM	
Duplicate (B241263-DUP2) TKN	Source	e ID: RW0	0065-02			0.416	20	04/05/2024	EDM	D
Duplicate (B241263-DUP3) TKN	Source	e ID: RW0	0065-07			3.97	20	04/05/2024	EDM	D
Matrix Spike (B241263-MS1) TKN	Sour	ce ID: AC	00341-01	102	80-120			04/05/2024	EDM	
Matrix Spike (B241263-MS2) TKN	Sour	ce ID: RW	/00065-02	101	80-120			04/05/2024	EDM	D
Matrix Spike (B241263-MS3) TKN	Sour	ce ID: RW	/00065-07	88.7	80-120			04/05/2024	EDM	D
Matrix Spike Dup (B241263-I TKN	MSD1)	Source	ID: AC00341	-01 97.7	80-120	3.03	20	04/05/2024	EDM	
Matrix Spike Dup (B241263-I TKN	MSD2)	Source	ID: RW0006	5-02 98.7	80-120	1.20	20	04/05/2024	EDM	D
Matrix Spike Dup (B241263-I TKN	MSD3)	Source	ID: RW0006	5-07 95.8	80-120	3.01	20	04/05/2024	EDM	D
Batch: B241409 Blank (B241409-BLK1) Chloride		<0.015	mg/L					04/18/2024	SMC	U
Blank (B241409-BLK2) Chloride		<0.015	mg/L					04/19/2024	SMC	U
Blank (B241409-BLK3) Chloride		<0.015	mg/L					04/19/2024	SMC	U
LCS (B241409-BS1) Chloride				96.8	90-110			04/18/2024	SMC	
LCS (B241409-BS2) Chloride				96.2	90-110			04/18/2024	SMC	
LCS (B241409-BS3) Chloride				96.3	90-110			04/19/2024	SMC	

he contents of this report apply to the sample(s) analyzed in accordance with the Chain of Custody document to duplication of this report is allowed, except in its entirety

Analyte Name	Metho Blanl	d C Units	% Recovery	Recovery Limits	RPD	RPD Limit	Analyzed	Analyst Initials	Qualifier
Wet Chemistry (Contir	nued)								
Batch: B241409 (Continue	d)								
Duplicate (B241409-DUP1) Chloride	Source ID: A0	00340-01			0.0752	10	04/18/2024	SMC	
Duplicate (B241409-DUP2) Chloride	Source ID: R	W00065-13			0.328	10	04/18/2024	SMC	D
Duplicate (B241409-DUP4) Chloride	Source ID: R	W00069-11			0.239	10	04/19/2024	SMC	
Duplicate (B241409-DUP5) Chloride	Source ID: R	W00070-08			0.923	10	04/19/2024	SMC	D
Duplicate (B241409-DUP6) Chloride	Source ID: R	W00067-10RE	1		0.341	10	04/20/2024	SMC	D
Matrix Spike (B241409-MS1) Chloride	Source ID: /	AC00340-01	97.9	90-110			04/18/2024	SMC	
Matrix Spike (B241409-MS2) Chloride	Source ID:	RW00065-13	96.8	90-110			04/18/2024	SMC	D
Matrix Spike (B241409-MS4) Chloride	Source ID:	RW00069-11	98.8	90-110			04/19/2024	SMC	
Matrix Spike (B241409-MS5) Chloride	Source ID:	RW00070-08	98.2	90-110			04/19/2024	SMC	D
Matrix Spike (B241409-MS6) Chloride	Source ID:	RW00067-10R	E1 95.5	90-110			04/20/2024	SMC	D
Matrix Spike Dup (B241409-I Chloride	(ISD1) Sour	ce ID: AC0034	0-01 97.9	90-110	0.0119	10	04/18/2024	SMC	
Matrix Spike Dup (B241409- Chloride	MSD2) Sour	ce ID: RW0006	65-13 97.0	90-110	0.105	10	04/19/2024	SMC	D
Matrix Spike Dup (B241409- Chloride	(ISD4) Sour	ce ID: RW0006	69-11 99.6	90-110	0.708	10	04/19/2024	SMC	
Matrix Spike Dup (B241409- Chloride	MSD5) Sour	ce ID: RW000	70-08 98.8	90-110	0.380	10	04/19/2024	SMC	D
Matrix Spike Dup (B241409-I Chloride	MSD6) Sour	ce ID: RW0000	67-10RE1 96.6	90-110	0.595	10	04/20/2024	SMC	D

Analyte Name	Method Blank	Units	% Recoverv	Recovery Limits	RPD	RPD Limit	Analyzed	Analyst Initials	Qualifier
)issolved Wet Chemis	stry					Linne	Analyzeu		Quanner
Satch: B241173	sti y								
Blank (B241173-BLK1)									
Orthophosphate, as P	<0.003	mg/L					03/29/2024	JAL	U
Blank (B241173-BLK2) Orthophosphate, as P	<0.003	mg/L					03/29/2024	JAL	U
LCS (B241173-BS1) Orthophosphate, as P			97.4	90-110			03/29/2024	JAL	
LCS (B241173-BS2) Orthophosphate, as P			98.8	90-110			03/29/2024	JAL	
Duplicate (B241173-DUP1) Orthophosphate, as P	Source ID: AC00	340-01			0.151	10	03/29/2024	JAL	
Duplicate (B241173-DUP2) Orthophosphate, as P			0.870	10	03/29/2024	JAL	D		
Duplicate (B241173-DUP3) Orthophosphate, as P	Source ID: WB0	3032-06			0.481	10	03/29/2024	JAL	D
Matrix Spike (B241173-MS1) Orthophosphate, as P	Source ID: AC	00340-01	99.1	90-110			03/29/2024	JAL	
Matrix Spike (B241173-MS2) Orthophosphate, as P	Source ID: RW	00064-08	99.9	90-110	50.00117		03/29/2024	JAL	D
Matrix Spike (B241173-MS3) Orthophosphate, as P	Source ID: WB	03032-06	99.8	90-110			03/29/2024	JAL	D
Matrix Spike Dup (B241173-N Orthophosphate, as P	(ISD1) Source	D: AC0034	0-01 98.4	90-110	0.459	10	03/29/2024	JAL	
Matrix Spike Dup (B241173-M Orthophosphate, as P	(ISD2) Source	D: RW0006	6 4-08 101	90-110	0.438	10	03/29/2024	JAL	D
Matrix Spike Dup (B241173-N Orthophosphate, as P	(ISD3) Source	D: WB0303	82-06 101	90-110	0.301	10	03/29/2024	JAL	D

Analyte Name	Method Blank	Units	% Recovery	Recovery Limits	RPD	RPD Limit	Analyzed	Analyst Initials	Qualifier
Total Metals									
Batch: B241177									
Blank (B241177-BLK1)								-	
Arsenic	<0.070	ug/L					04/14/2024	DMW	U
Cadmium	<0.010	ug/L					04/14/2024		11
Lead	<0.010	ug/L					04/14/2024	DIVIVV	0
LCS (B241177-BS1)				05.445			04/44/2024	DMALA (
Arsenic			101	85-115			04/14/2024		
			102	85-115			04/14/2024	DMW	
			100	00110			0.11.2021		
Duplicate (B241177-DUP1)	Source ID: ES00	308-04			1 20	20	04/14/2024		
Arsenic					NR	20	04/14/2024	DMW	U
Lead					0.466	20	04/14/2024	DMW	
	0	00000.04							
Matrix Spike (B2411/7-MS1)	Source ID: ES	00308-04	100	70-130			04/14/2024	DMW	
Cadmium			101	70-130			04/14/2024	DMW	
Lead			101	70-130			04/14/2024	DMW	
Matrix Spike Dup (D244477 I			0.04					1111	
Arsenic	visuit) Source	ID. ES0030	101	70-130	0 462	20	04/14/2024	DMW	
Cadmium			102	70-130	1.01	20	04/14/2024	DMW	
Lead			101	70-130	0.120	20	04/14/2024	DMW	
Bataby B241226									
Blank (B241226-BLK1)									
Calcium	<0.04	ma/L					04/11/2024	EDM	U
Magnesium	<80	ug/L					04/11/2024	EDM	U
Phosphorus as P	<0.012	mg/L					04/11/2024	EDM	U
LCS (B241226-BS1)									
Calcium			98.9	85-115			04/11/2024	EDM	
Magnesium			101	85-115			04/11/2024	EDM	
Phosphorus as P			102	85-115			04/11/2024	EDM	
Duplicate (B241226-DUP1)	Source ID: ACO	0341-01							
Calcium					1.81	20	04/11/2024	EDM	
Magnesium					1.16	20	04/11/2024	EDM	
Phosphorus as P					2.27	20	04/11/2024	EDM	
Matrix Spike (B241226-MS1)	Source ID: AC	00341-01							
Calcium			100	70-130			04/11/2024	EDM	
Magnesium			102	70-130			04/11/2024	EDM	
Phosphorus as P			101	70-130			04/11/2024	EDM	
Matrix Spike Dup (B241226-	MSD1) Source	ID: AC0034	41-01						
Calcium			102	70-130	1.34	20	04/11/2024	EDM	
Magnesium			103	70-130	0.658	20	04/11/2024	EDM	
Phosphorus as P			103	70-130	1.62	20	04/11/2024	EDIVI	

	Method		%	Recovery		RPD		Analyst	
Analyte Name	Blank	Units	Recovery	Limits	RPD	Limit	Analyzed	Initials	Qualifier
otal Metals (Continue	ed)								
3atch: B241233 Blank (B241233-BLK1)									
Mercury	<0.01	ug/L					04/05/2024	SAS	U
LCS (B241233-BS1) Mercury			104	85-115			04/05/2024	SAS	
Duplicate (B241233-DUP1) Mercury	Source ID: ACO	0340-01			47.0	20	04/05/2024	SAS	QC-02
Duplicate (B241233-DUP2) Mercury	Source ID: BB03	3721-01			NR	20	04/05/2024	SAS	U
Matrix Spike (B241233-MS1) Mercury	Source ID: AC	00340-01	97.8	70-130			04/05/2024	SAS	
Matrix Spike (B241233-MS2) Mercury	Source ID: BB	03721-01	101	70-130			04/05/2024	SAS	
Matrix Spike (B241233-MS3) Mercury	Source ID: EP	00317-02R	E1 75.9	70-130			04/05/2024	SAS	D
Matrix Spike Dup (B241233-N Mercury	(ISD1) Source	ID: AC0034	40-01 91.3	70-130	5.80	20	04/05/2024	SAS	
Matrix Spike Dup (B241233-N Mercury	//SD2) Source	ID: BB0372	21-01 102	70-130	1.06	20	04/05/2024	SAS	

	Method		%	Recovery		RPD		Analyst	
Analyte Name	Blank	Units	Recovery	Limits	RPD	Limit	Analyzed	Initials	Qualifier
Dissolved Metals									
Batch: B241178									
Blank (B241178-BLK1)									
Cadmium	<0.010	ug/L					04/04/2024	DMW	U
Copper	<0.15	ug/L					04/04/2024	DMW	U
Lead	<0.0090	ug/L					04/04/2024	DMW	U
Zinc	<0.50	ug/L					04/04/2024	DMW	U
LCS (B241178-BS1)									
Cadmium			99.9	85-115			04/04/2024	DMW	
Copper			93.2	85-115			04/04/2024	DMW	
Lead			99.4	85-115			04/04/2024	DMW	
Zinc			94.5	85-115			04/04/2024	DMW	
Duplicate (B241178-DUP1)	Source ID: AC00	340-01							
Cadmium					NR	10	04/04/2024	DMW	U
Copper					0.527	10	04/04/2024	DMW	
Lead					2.01	10	04/04/2024	DMW	
Zinc					1.59	10	04/04/2024	DMW	
Matrix Spike (B241178-MS1)	Source ID: AC	00340-01							
Cadmium			102	70-130			04/04/2024	DMW	
Copper			91.6	70-130			04/04/2024	DMW	
Lead			98.4	70-130			04/04/2024	DMW	
Zinc			91.2	70-130			04/04/2024	DMW	
Matrix Spike Dup (B241178-M	ISD1) Source	D: AC0034	0-01						
Cadmium			102	70-130	0.490	10	04/04/2024	DMW	
Copper			91.9	70-130	0.188	10	04/04/2024	DMW	
Lead			98.3	70-130	0.146	10	04/04/2024	DMW	
Zinc			89.8	70-130	0.970	10	04/04/2024	DMW	

Notes and Definitions

Definition
Data reported from a dilution
The RPD is greater than the method acceptance criteria. At least one of the values used to calculate the RPD, is less than or equal to the PQL.
Analyte included in the analysis, but not detected

lethod Reference Acronyms

ColilertColilert, IDEXX Laboratories, Inc.EPAManual of Methods for Chemical Analysis of Water and Wastes, USEPAGSUSGS Techniques of Water-Resources InvestigationsHHHach Spectrophotometer Procedures ManualSMStandard Methods for the Examination of Water and WastewaterSWTest methods for Evaluating Solid Waste, SW-846

Stephen Quintero or Azubike Emenari QA/QC Coordinator

Kate Harris

Interim Water Quality Laboratory Manager

										-							×.	100			
Ada Co	unty Hig	hway D	istrict															0°0			
Attn: Steven Turner 3775 Adams StreetGarden City, Idaho 83714–6418Tel. (208) 387–6269Fax (208) 387–6391Purchase Order:Project:Sampler(s):Kinsten Chishalm $\#$ Steven Turnet				i28 /ater-Pl 1 (his ven Ti	halm	ω	Matrix	Туре	уре	0.B	00	D	2		- EPA 365.1	0 - EPA 200.8	A 245.2	HOOHING CANDAR EPA BOU	A 200.7 VVV	A 353.2	NH ₃ -D
Lab#	Begin Date	End Date	Begin Time	End Time	Sample Identification	Sampler Initial	Water	Grab	Composite	BOD ₅ - SM 521	COD - Hach 80	TSS - SM 2540	TKN - EPA 351	TP - EPA 200.7	Orthophosphate	Diss. Cd Cu. Pt	Total Hg - EP/	E. Coli - IDEXO	Turbidity - EPP Hardness - EP	NO3+NO2 - EP	NH ₃ - SM 4500 Total Container
00340-01	3/27/24	3/28/24	·i933	0739	23-240328-12-WC	IEC	×		X	X	χ-	* >	(*	XY	L X	X	×,	* 1	¢χ	хy	.3
V-02		3/23/24		1200	240328-14-WE002	KC	X		×	×	× ;	× >	×Χ	XX	i ×	: X	×	* >	· >	x ;	K I
Pelipqui	shod by (sign)	Date	e & Time	Boogived by (sign)									ial h	netr		0.000				
Kistel	Listol) ,	Tra 3/28/2	<u>nsferrec</u> 13	D August 3/20/24	34							-her								

