Americana Subwatershed Monitoring Summary Report

Water Year 2024

Prepared by Brown and Caldwell

Prepared for Ada County Highway District November 20, 2024

Brown AND Caldwell

This document was prepared solely for ACHD in accordance with professional standards at the time the services were performed and in accordance with the contract between ACHD and Brown and Caldwell dated September 12, 2024. This document is governed by the specific scope of work authorized by ACHD; it is not intended to be relied upon by any other party except for regulatory authorities contemplated by the scope of work. We have relied on information or instructions provided by ACHD and other parties and, unless otherwise expressly indicated, have made no independent investigation as to the validity, completeness, or accuracy of such information.

Americana Subwatershed Monitoring Summary WY 2024

Ada County Highway District 11/20/2024

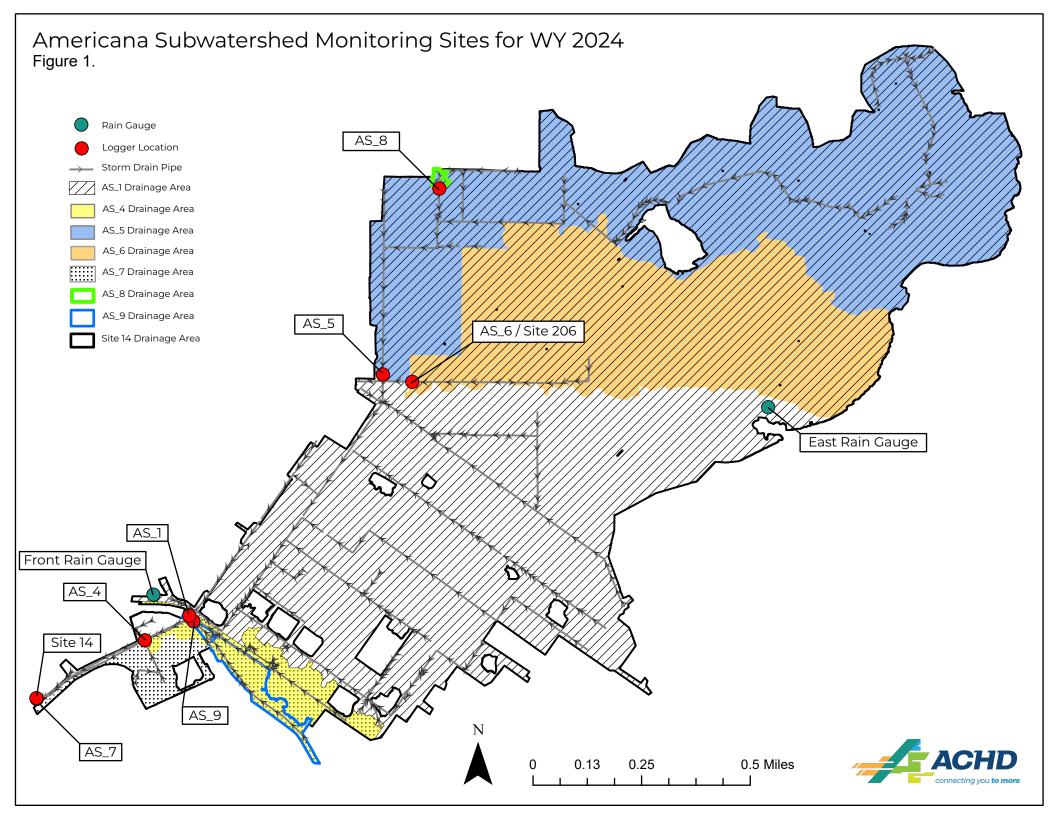
Table of Contents

List of Figures	. ii
List of Tables	. ii
Section 1: Introduction	.1
Section 2: Monitoring Sites, Equipment, and Sample Types	.3
2.1 Water Quality Sample Types	.5
Section 3: Americana Subwatershed Monitoring Results	
3.1 Water Level Monitoring Results	.5
3.2 Water Quality Monitoring Results	.6
3.2.1 Grab Samples	.6
3.2.2 Composite Samples	.7
Tables TAB	-1
Figures	-1

List of Figures

Figure 1. Americana Subwatershed Monitoring Sites for WY 2024	.2
Figure 2. Conceptual Layout of Monitoring Sites	.4

List of Tables


ble 3-1. Storm Event Summary

Section 1: Introduction

Ada County Highway District, Boise State University, City of Boise, City of Garden City, Drainage District #3, and the Idaho Transportation Department District #3 (Permittees) were issued a National Pollutant Discharge Elimination System Phase I Permit #IDS-027561 (Permit) on October 1, 2021. The Permit authorizes the Permittees to discharge from municipal separate storm sewer system outfalls to the Boise River and its tributaries. According to Permit Part 6.2.2, *Subwatershed Monitoring,* Permittees are required to conduct monitoring within the Americana subwatershed to better define wet weather and dry weather flow volumes, sources, and pollutant loads.

The Americana subwatershed is one of the largest urban subwatersheds on the lower Boise River and drains a significant portion of downtown Boise and the North End and Foothills residential areas. Stormwater discharge monitoring (flow measurement and analytical sample collection) is currently conducted at the Americana outfall as identified in the <u>Stormwater Outfall Monitoring Plan</u> (ACHD, 2022). While data collected at the outfall is important for understanding discharges to the Boise River, the dataset does not provide much information about the pollutant load and dry weather sources farther up in the storm drain system. Guided by the <u>Americana Subwatershed Plan</u> (ACHD, 2020), the Americana subwatershed is divided into subcatchments at major nodes in the system to parse out non-stormwater flow sources and characterize pollutant contributions. The following summary describes Americana subwatershed monitoring activities during water year (WY) 2024 (October 1, 2023–September 30, 2024).

In WY 2024, data collection throughout the Americana subwatershed included precipitation, water level, flow, and water quality samples. Precipitation data were collected at two representative locations, and water level data were collected at six subwatershed locations and at the Americana monitoring station. The water level data were compared to the precipitation data to look for anomalies in the municipal separate storm sewer system, such as instances when the water level in pipe increases or decreases without a corresponding precipitation event and when the water level increases from isolated subcatchment areas. Additionally, water quality data from wet weather discharges were collected from one subcatchment site (Site 206) to compare with the Americana outfall site (Site 14). The water quality data, along with flow data, were used to calculate pollutant loads and identify pollutants discharging from Site 206 that are disproportionately high compared to Site 14.

Section 2: Monitoring Sites, Equipment, and Sample Types

Data was collected at the following monitoring sites during WY 2024: AS_1, AS_4, AS_7, AS_8, AS_9, Site 14, Site 206, Front, and East (Figure 1). Details on each of the monitoring sites, including subcatchment areas, pipe characteristics, and equipment deployment start and end dates, are found in Table 1. Figure 2 shows the locations of the monitoring sites in relation to each other using a conceptual layout of the storm drain system. Midway through WY 2023, AS_5 and AS_6 logger sites were discontinued.

Site 14 is the Americana outfall monitoring station used in the National Pollutant Discharge Elimination System Phase I Stormwater Outfall Monitoring program. This monitoring site is equipped with a flowmeter and sampler to collect water level, velocity, flow, and composite samples. Water level, velocity, and flow data are collected at 15-minute intervals during dry weather and 1-minute intervals when the equipment is set up to monitor a forecasted storm event

Site 206 is a subcatchment of the Americana subwatershed. Similar to Site 14, it is equipped with a flowmeter and sampler to collect flow and water quality data during targeted storm events.

AS_7 is a secondary outfall to Site 14, with a connection between storm drain pipes farther up in the system. This site is equipped with a flowmeter to capture continuous water level, velocity, and flow data at 5-minute intervals.

The AS_8 site was installed during the second quarter of WY 2023 to replace AS_5. The AS_8 subwatershed is much smaller than the AS_5 subwatershed; however, it still captures Hull's Gulch flows into the Americana storm drain system.

The AS_9 site was added to measure dry weather flow at AS_4 by splitting the subwatershed into two areas, with AS_4 representing the upstream portion of the AS_9 subwatershed.

The AS_6 logger site was discontinued in the second quarter of WY 2023; however, Site 206 still collects flow and water quality data during targeted storm events.

AS_1, AS_4, AS_8, and AS_9 represent subcatchment areas within the Americana subwatershed. Each site is equipped with a water level logger to collect in-pipe water level data. The loggers continuously record pressure readings at 5-minute intervals. The pressure readings are corrected using local barometric pressure and converted to water level.

Front and East are rain gauge sites and are equipped with tipping bucket rain gauges. The rain gauges collect continuous precipitation data in 0.01-inch increments using event data loggers. The precipitation data are used to determine the date and times of wet weather storm events and dry weather periods.

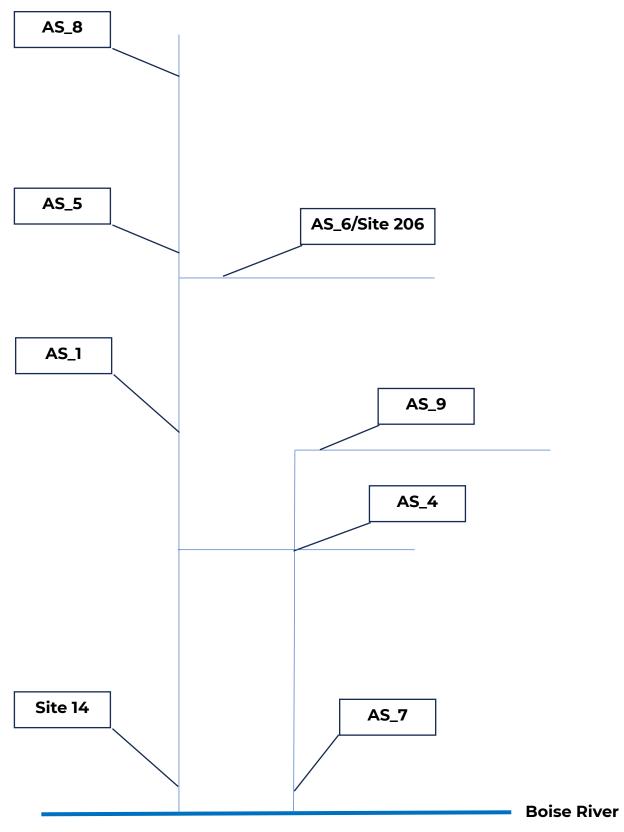


Figure 2. Conceptual Layout of Monitoring Sites

2.1 Water Quality Sample Types

The sample types collected during WY 2024 include grab samples and composite samples. Grab samples represent a discrete measurement from the overall storm discharge while composite samples represent the entire discharge.

Grab samples were manually collected from the discharge stream using a swing sampler. The grab samples were submitted to the Boise City Water Quality Laboratory and analyzed for *E. coli*. At the time that the grab samples were collected, field parameters (temperature, pH, dissolved oxygen, and conductivity) were measured using In-Situ smarTROLL or In-Situ Aqua TROLL handheld instruments.

Composite samples were collected using automatic samplers, which worked in conjunction with flowmeters. After a predetermined volume of flow was discharged, the flowmeters triggered the sampler to collect a subsample. Each subsample was deposited into a 15-liter carboy, resulting in a flow-proportional composite sample. The composite samples were submitted to Boise City Water Quality Laboratory where they were split for analysis. The following constituents were analyzed: biological oxygen demand, 5-day (BOD₅); chemical oxygen demand (COD); hardness as calcium carbonate (CaCO₃); turbidity; total suspended solids; total dissolved solids (TDS); total phosphorus (P); orthophosphate as P; ammonia; nitrate + nitrite as nitrogen; total Kjeldahl nitrogen (TKN); total arsenic; dissolved and total cadmium; dissolved copper; dissolved and total lead; total mercury; and dissolved zinc.

Section 3: Americana Subwatershed Monitoring Results

This section describes water level monitoring results and water quality results and provides highlevel conclusions and outcomes based on WY 2024 data.

3.1 Water Level Monitoring Results

For WY 2024, water level data from six monitoring sites (AS_1, AS_4, AS_7, AS_8, AS_9, and Site 14) were evaluated for occurrences of increasing or decreasing water level not attributed to precipitation. Though the pipe size at each site differs, the change in water level is still evident in the data. When a change in water level is seen at one or more sites, the discharge must originate from the site that is farthest "up pipe" in the storm drain system. Figures 3–6 show hydrographs for each quarter of WY 2024. Color bands were applied to the hydrographs to indicate periods where no rain was recorded, but the water level fluctuated at one or more sites. Fluctuations of less than 2 hours were not included in the analysis as non-stormwater sources. Fluctuations lasting more than 72 hours are marked as extended periods of non-stormwater flow and are denoted in the hydrographs with hatched color bands. The following conclusions were extracted from visually inspecting the hydrographs:

- Sudden water level increases and decreases were observed, which are likely caused by humanrelated activities such as turning on a pump or opening a headgate.
- Reoccurring water level spikes were observed at AS_7 between 2330 and 0900. Similar spikes were observed in the second and third quarter of WY 2023. Therefore, AS_7 water level spikes were omitted from WY 2024 quarterly summaries, unless the AS_7 water level spike aligned with another site(s). Investigation on the AS_7 logger equipment is ongoing.
- Concurrent water level increases and decreases were observed at AS_1 and AS_4 but not in AS_9. Using the conceptual pipe layout in Figure 2 as a reference, it becomes apparent that there must be a different pipe connection farther in the AS_4 subcatchment area causing water level anomalies.

- Based on historical Google Earth imagery, significant building and road construction activities have been observed in the AS_4 subwatershed area.
- An extended period of non-stormwater flow originating from AS_1 subcatchment (which includes downtown Boise) occurred on November 22, 2023, through November 27, 2023 (approx. 6 days).
- An extended period of non-stormwater flow originating from AS_8 subcatchment occurred on February 8, 2023, through February 13 (approx. 6 days). The non-stormwater source is likely snow melt in Hull's Gulch. A non-extended, non-stormwater discharge originating from AS_8 occurred once on February 26, 2024.
- Non-stormwater discharge originated from the AS_1 subcatchment 51 times, with the most anomalies generally occurring in the third quarter (35 percent)
- Non-stormwater discharge originated from AS_4 subcatchment 39 times, with the most anomalies generally occurring in the fourth quarter (36 percent)
- No anomalies were found at Site 14 and AS_9.

3.2 Water Quality Monitoring Results

During WY 2024, water quality samples from wet weather discharges were collected from one subcatchment site (Site 206) to compare with the Americana outfall site (Site 14). Samples were collected from five storm events. A summary of the storm dates and sample types collected is provided in Table 3-1. Attempts were made to collect samples from both Site 14 and Site 206 during the same storm event. When paired samples were successfully collected from both sites, the water quality results were directly compared to one another. Results from samples that were collected from only one of the two sites were omitted from the subsequent discussion; however, the values will be used when calculating statistics for the final report. Comprehensive analytical results from all samples collected are included in Table 2, attached.

Table 3-1. Storm Event Summary										
Storm Event Date Site 14 Site 206										
10/10/23	Grab, composite ^a	-								
11/19/23	Grab ^b , composite	Grab, composite								
02/01/24	Grab ^c , composite	Grab ^c , composite								
02/26/24	Grab, composite	Grab, composite								
03/28/24	Grab	Grab								

- No data

 $^{\rm a}$ Composite sample qualified due to lack of representativeness (50%–75%) of the calculated flow volume.

^b Incomplete field parameter collection on the grab sample data form due to field error.

^c E. coli sample qualified due to exceeded hold time.

3.2.1 Grab Samples

Paired grab samples were collected from Site 14 and Site 206 on February 26, 2024, and March 28, 2024. They were analyzed for *E. coli*, temperature, pH, dissolved oxygen, and conductivity. Notable conclusions from each storm event are provided below.

February 26, 2024

- *E. coli* at Site 14 was approximately two times higher than at Site 206.
- Specific conductivity at Site 14 was nearly four times higher than Site 206.

March 28, 2024

- *E. coli* at Site 206 was approximately one time higher than at Site 14.
- Specific conductivity at Site 14 was two times higher than at Site 206

3.2.2 Composite Samples

Paired composite samples were collected from Site 14 and Site 206 on November 19, 2023; February 1, 2024; and February 26, 2024.

Event-specific pollutant loads for each analyzed constituent were calculated by multiplying the volume of discharge as measured at the site by the constituent concentration. The pollutant loads, in pounds, are in Table 3, attached.

To evaluate the contribution Site 206 had on the overall pollutant load discharging from the Americana outfall, the percentage of the pollutant load was compared to the percentage of discharge volume. When the percentage of the pollutant load is greater than the percentage of discharge volume, the pollutant load discharging from the subcatchment is disproportionately high. This logic statement is illustrated below.

IF
pollutant load (lbs)from subcatchment discharge volume (cf)from subcatchment
pollutant load (lbs)from outfall THEN > discharge volume (cf)from outfall
pollutant load from subcatchment is disproportionately high

The percent contribution of pollutant load and the percent contribution of discharge volume were calculated for both Site 206 and Site 14 from each storm event (Figures 7, 8, and 9). The graphs include a vertical orange line indicating the value for the percent of discharge. Constituent loads that exceed the orange line are disproportionately high. Noteworthy outcomes from each paired storm event are presented below.

November 19, 2023

- Load contributions from Site 206 were disproportionately high for most constituents except for the following parameters: hardness as CaCO₃, nitrate + nitrite as N, total arsenic, total cadmium, and total mercury.
- The percent of dissolved lead load from Site 206 was approximately 5.5 times higher than the percent of discharge volume.
- The percent pollutant load from Site 206 was between 3.5 to 4.0 times higher than the percent discharge volume for the following parameters: BOD₅ and orthophosphate as P.
- The percent pollutant load from Site 206 was between 3.0 to 3.5 times higher than the percent discharge volume for the following parameters: total phosphorus and COD.
- The percent pollutant load from Site 206 was between 2.0 to 2.5 times higher than the percent discharge volume for the following parameters: TKN and dissolved zinc.
- The percent pollutant load from Site 206 was between 1.5 to 2.0 times higher than the percent discharge volume for the following parameters: TDS, dissolved copper, and total lead.

February 1, 2024

- Load contributions from Site 206 were disproportionately high for most constituents except for the following parameters: hardness as CaCO₃, TDS, ammonia as nitrogen, nitrate + nitrite as N, total arsenic, dissolved cadmium, and dissolved zinc.
- The percent of dissolved lead load from Site 206 was approximately 3 times higher than the percent of discharge volume.
- The percent pollutant load from Site 206 was between 2.0 to 2.5 times higher than the percent discharge volume for the following parameters: total phosphorus and orthophosphate as P.
- The percent pollutant load from Site 206 was between 1.5 to 2.0 times higher than the percent discharge volume for the following parameters: BOD₅, COD, TKN, total lead, and total mercury.

February 26, 2024

- Load contributions from Site 206 were disproportionately high for most constituents except for the following parameters: hardness as CaCO₃, TDS, nitrate + nitrite as N, total arsenic, dissolved cadmium, total cadmium, and dissolved zinc.
- The percent of dissolved lead load from Site 206 was approximately 3.5 times higher than the percent of discharge volume.
- The percent of orthophosphate as P load from Site 206 was approximately 2.5 times higher than the percent of discharge volume.
- The percent pollutant load from Site 206 was between 1.5 to 2.0 times higher than the percent discharge volume for the following parameters: total phosphorus, TKN, and total lead.

Tables

- Table 1. Monitoring Site Information
- Table 2. Field and Analytical Data Summary
- Table 3. Event Pollutant Loading Estimates in Pounds

							Table	e 1. Monitorin	g Site Infor	mation						
Location Name	Study ID	Latitude/ Longitude	Manhole ID (SWMM File)	Manhole ID (Americana Manholes Files)	Subcatchment Total Area (acres)	Subcatchment Impervious Area (acres)	Pipe Diameter (in)	Pipe Construction	Manning's Coefficient (n value)	Pipe Slope	Water Level During Installation (in)	Equipment ID	Equipment Deploy Start Date	Equipment Deploy End Date	Installation Notes	
												Hach Flowmeter (FL-23)	2013	9/8/2020		
Americana Monitoring		Americana Monitoring										Hach Sampler (SA-17)	2013	9/8/2020		
Station	Site 14	Station	NA	NA	915	291	48	concrete	NA	NA	NA	ISCO Signature Flowmeter (FL-29)	9/8/2020	NA		
												ISC0 6712 Sampler (SA-20)	9/8/2020	NA	-	
												HOBO Logger (SN:20029104)	8/10/2018	11/7/2023		
		43°37'7.57"N									4.13	HOBO Logger (SN:20029102)	9/15/2023	11/7/2023	Logger installed downstream of manhole with conduit facing	
16th and Front St	AS_1	116°12'52.66"W	J87872	33634	869	255	42	concrete	0.015	0.0001	4.10	ISC0 2150 Flowmeter (FL-21)	10/25/2019	1/24/2020	downstream	
												HOBO Logger (SN:20029105)	11/7/2023	NA		
Americana_River_South	AS_2	43°37'4.63"N 116°13'0.20"W	J5567	35568	39	28	42	concrete	0.015	0.0001	1.5	HOBO Logger (SN:20029109)	8/10/2018	4/28/2020	Large pipe downstream of manhole (south) that leads to secondary outfall with conduit facing downstream flow	
Americana_River_East	AS_3	43°37'4.63"N 116°13'0.20"W	J5567	35568	10	5	16	concrete	0.015	0.0001	2	HOBO Logger (SN:20029106)	8/10/2018	1/6/2021	Small pipe upstream of manhole (east) with conduit facing upstream	
												HOBO Logger (SN:20029101)	8/10/2018	NA	Large pipe upstream of manhole (north) with conduit perpendicular to flow	
		43°37'4.63"N									2	ISC0 2150 Flowmeter (FL-21)	7/10/2020	3/5/2021	Water level at installation: 2.7 inches	
Americana_River St	AS_4	116°13'0.20"W	J5567	35568	29	23	42	concrete	0.015	0.0001	3	HOBO Logger (SN:20029102)	3/7/2024	NA	Nater level at installation: 2.0 inches	
												HOBO Logger (SN:21904490)	4/2/2024	NA	Water level at installation: 3.0 inches	
15th_Resseguie	AS_5	43°37'36.17"N 116°12'21.10"W	J5577	23810	289	49	30	concrete	0.015	0.0001	1.5	HOBO Logger (SN:20029105)	8/10/2018	2/17/2023	Logger installed downstream of manhole with conduit facing downstream	
					206	23	22	corrugated metal	0.024	0.0001	NA	HOBO Logger (SN:20029102)	8/17/2018	3/7/2023	Installed downstream of vault	
												Hach Flowmeter (FL-25)	1/23/2020	3/4/2020	Installed upstream of vault, has smaller drainage area than HOBO	
												Hach Flowmeter (FL-18)	3/4/2020	4/18/2024	logger	
14th Decentuio	AS_6/	43°37'35.73"N	J16834	13187								Hach Sampler (SA-11)	1/23/2020	10/9/2020		
14th_Resseguie	Site 206	116°12'16.60"W	510854	13107	203	22	22	corrugated metal	0.024	0.0001	NA	Hach Sampler (SA-13)	10/9/2020	12/10/2021		
												Hach Sampler (SA-09)	12/10/2021	4/18/2024	Installed upstream of vault, has smaller drainage area than HOBO logger	
												ISCO Signature Flowmeter (FL-31)	9/18/2024	NA		
												ISCO 6712 Sampler (SA-17)	9/18/2024	NA		
Americana East	AS_7	43°36'57.66"N 116°13'17.75"W	NA	NA	40	30	42	concrete	0.015	0.0001	NA	ISCO 2150 Flowmeter (FL-20)	1/11/2019	NA	ISCO flowmeter installed	
13th_Lemp to Heron	AS_8	43°37'59.05"	NA	NA	1	0	36	corrugated	0.024	0.0001	NA	HOBO logger (SN: 20029106)	2/24/2023	11/7/2023		
13m_remp to neion	H3_0	116°12'11.83"			1	0	30	metal	0.024	0.0001	INA .	HOBO logger (SN:20029104)	11/7/2023	NA		
16th_Rhodes	AS 0	43°37'7.18"	NA	NA	10	5	21	concrete	0.015	0.0001	NA	HOBO logger (SN:20029109)	2/24/2023	9/15/2023	Was uninstalled on $9/15/2023$ due to a dead battery. There was no other replacement until $11/7/2023$ when it was reinstalled	
1001_11100053	AS_9	116°12'52.07"			10	5	21		0.010	0.0001	NA	HOBO logger (SN:21904491)	4/2/2024	NA		

											Tab	le 2. Field a	nd Analytica	I Data Sumn	nary												
												Analyti	cal Paramete	rs													
Sample Date	Monitoring	Sample ID Grab	Dissolved	nЦ	Conductivity	Temperature	E. coli	Sample ID	BUD	000	Hardness as	Turbidity	тее	тос	Total	Orthophosphate	Ammonia as	Nitrate +	TKN	Arconic total	Cadmium,	Cadmium,	Copper,	Lead,	Lead,	Mercury,	Zinc,
Sample Date	Station		Oxygen	рп	Conductivity	Temperature	L. COII	Composito	0005		CaCO ₃	Turbiuity	100	105	Phosphorus	as P	Ν	Nitrite as N		Aiseine, totai	dissolved	total	dissolved	dissolved	total	total	dissolved
			mg/L	S.U.	µS/cm	C	MPN/100 mL	Composite	mg/L	mg/L	mg/L	NTU	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
10/10/2023	Site 14	231010-14-WG	8.4	6.53	247.08	16.78	129.6	231010-14-WC	19.7 ^{2J}	77 ^{2J}	<0.100 ^{2J}	33.6 ^{2J}	23.6 ^{2J}	236 ^{2J}	0.308 ^{2J}	0.169 ^{2J}	0.353 ^{2J}	0.930 ^{2J}	1.44 ^{2J}	5.5 ^{2J}	0.021 ^{2J}	0.072 ^{2J}	8.2 ^{2J}	0.095 ^{2J}	2.4 ^{2J}	< 0.0100 ^{2J}	22.0 ^{2J}
11/19/2023	Site 14	231119-14-WG	- ^{3J}	_ ^{3J}	- ^{3J}	14.16	1340.0	231119-14-WC	36.5	94.0	57.8	15.0	21.7	153	0.504	0.402	0.454	0.614	1.27	2.1	0.022	0.061	4.0	0.11	1.9	< 0.0100	27.2
11/13/2023	Site 206	231119-206-WG	9.44	7.18	184.28	9.04	1732.9	231119-206-WC	162	329	43.3	21.1	28.7	263	2.06	1.71	0.563	0.136	3.17	1.7	0.029	0.059	8.5	0.93	3.3	< 0.0100	61.8
2/1/2024	Site 14	240201-14-WG	10.05	7.73	552.2	8.34	65.0 ^{4J}	240201-14-WC	6.98	55.0	93.3	89.6	50.7	224	0.213	0.116	0.193	0.905	1.05	3.4	0.016	0.063	3.4	0.090	4.2	< 0.0100	17.3
2/1/2024	Site 206	240201-206-WG	9.33	8.03	542.9	5.55	290.9 ^{4J}	240201-206-WC	11.6	108	16.8	143	70.3	116	0.464	0.285	0.159	0.191	1.83	3.0	0.013	0.077	4.5	0.29	6.7	0.0168	10.5
2/26/2024	Site 14	240226-14-WG	10.54	7.53	470.55	8.74	125.9	240226-14-WC	12.6	85.0	102	51.1	54.3	214	0.276	0.106	0.496	0.940	1.47	3.3	0.021	0.097	4.0	0.063	3.9	0.0148	24.3
2/20/2024	Site 206	240226-206-WG	9.39	7.44	124.28	6.49	53.7	240226-206-WC	17.7	122	22.2	75.5	75.8	85.8	0.570	0.289	0.522	0.278	2.43	2.2	0.016	0.087	5.0	0.26	6.3	0.0183	20.2
3/28/2024	Site 14	240328-14-WG	10.57	7.28	255.40	9.79	365.4	240328-14-WC	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-
3/20/2024	Site 206	240328-206-WG	9.92	7.60	108.59	7.74	387.3	240328-206-WC	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Notes:																											

– No data

 $^{\it 2J}$ Data qualified due to lack of representativeness (50% –75%) of the calculated flow volume.

^{3J} Incomplete field parameter collection on the grab sample data form due to field error.

^{4J} E. coli sample qualified due to exceeded hold time.

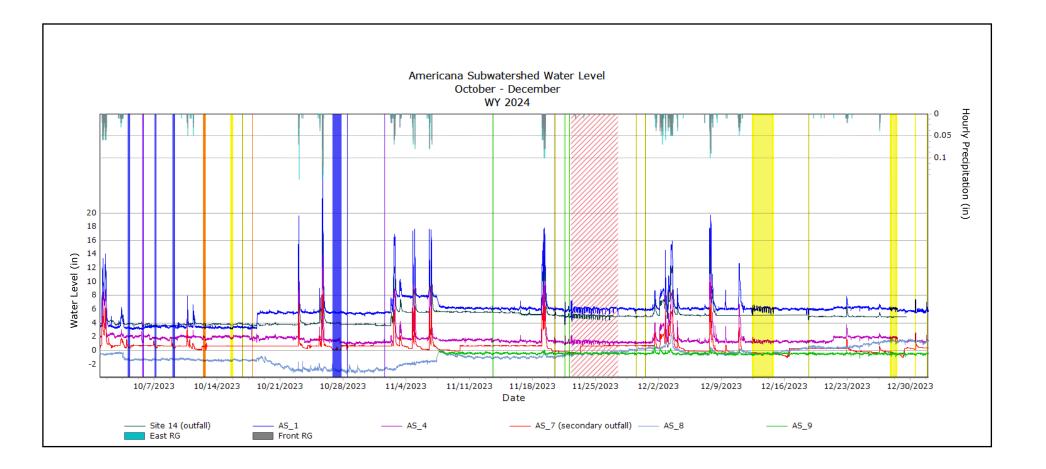
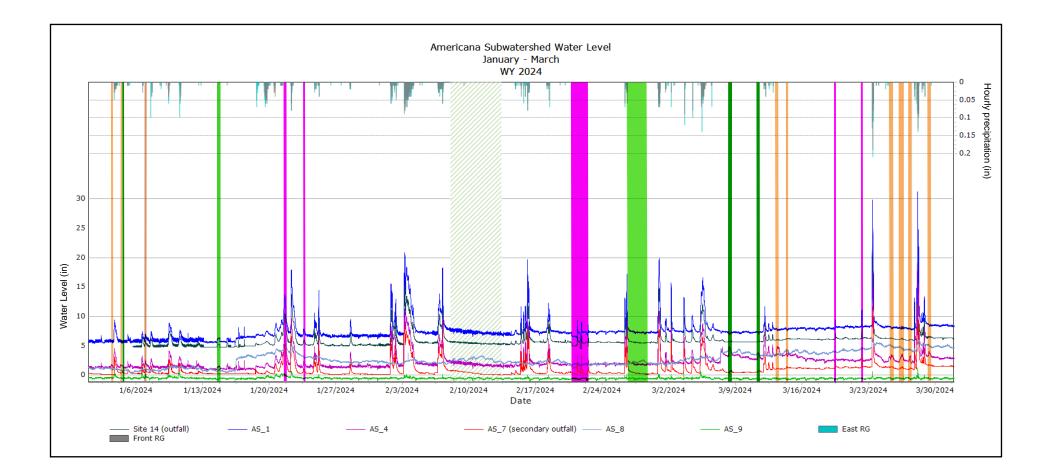
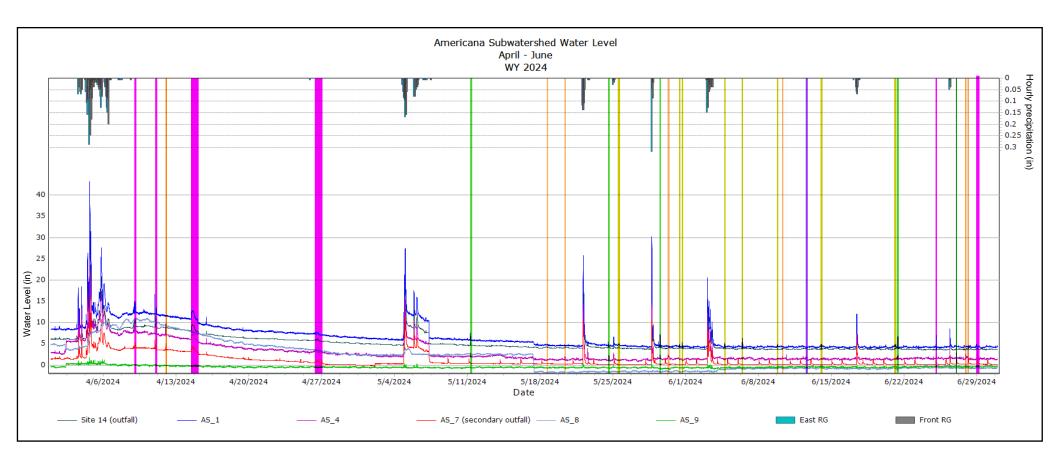

	Table 3. Event Pollutant Loading Estimates in Pounds																			
	P.C)D ₅	C	OD	Hardness as		Turk	oidity	т	SS	т)S	Total Dh	ocnhoruc	Orthophosphate		Ammonia as N		Nitrate	+ Nitrite
Event Date	DU	₅		00	Ca	CO3	TUIL	Jully		33			Total Phosphorus		a	s P	Allinolid dS N		as N	
	Site 14	Site 206	Site 14	Site 206	Site 14	Site 206	Site 14	Site 206	Site 14	Site 206	Site 14	Site 206	Site 14	Site 206	Site 14	Site 206	Site 14	Site 206	Site 14	Site 206
11/19/2023	723	215	1861	436	1144	57.3	0.0	0.0	430	38.0	3029	348	10.0	2.73	7.96	2.26	8.99	0.746	12.2	0.180
2/1/2024	114	11.5	895	107	1518	16.7	0.0	0.0	825	69.8	3644	115	3.46	0.461	1.89	0.283	3.14	0.158	14.7	0.190
2/26/2024	110	6.02	743	41.5	891	7.55	0.0	0.0	474	25.8	1870	29.2	2.41	0.194	0.926	0.098	4.33	0.177	8.21	0.0945

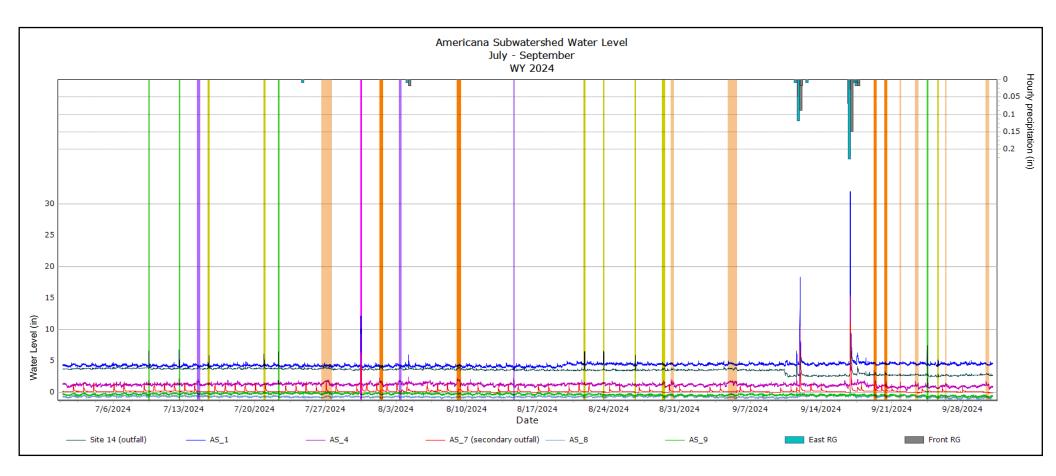
	Table 3. Event Pollutant Loading Estimates in Pounds																	
	TKN		Arsenic, total		Cadmium, dissolved		Cadmium, total		Copper, dissolved		Lead, dissolved		Lead, total		Mercu	ry, total	Zinc, dissolved	
Event Date	៣រួ	g/L	ug	;/L	UĮ	g/L	ug/L ug/L ug/L		g/L	ug/L		ug/L		ug/L				
	Site 14	Site 206	Site 14	Site 206	Site 14	Site 206	Site 14	Site 206	Site 14	Site 206	Site 14	Site 206	Site 14	Site 206	Site 14	Site 206	Site 14	Site 206
11/19/2023	25.1	4.20	0.0416	0.00225	0.000436	0.0000384	0.00121	0.0000781	0.0792	0.0113	0.00218	0.00123	0.0376	0.00437	0.000198	0.0000132	0.538	0.0818
2/1/2024	17.1	1.82	0.0553	0.00298	0.000260	0.0000129	0.00102	0.0000765	0.0553	0.00447	0.00146	0.000288	0.0683	0.00665	0.000163	0.0000167	0.281	0.0104
2/26/2024	12.8	0.826	0.0288	0.000748	0.000183	0.00000544	0.000848	0.0000296	0.0350	0.00170	0.000550	0.0000884	0.0341	0.00214	0.000129	0.00000622	0.212	0.00687


Figures

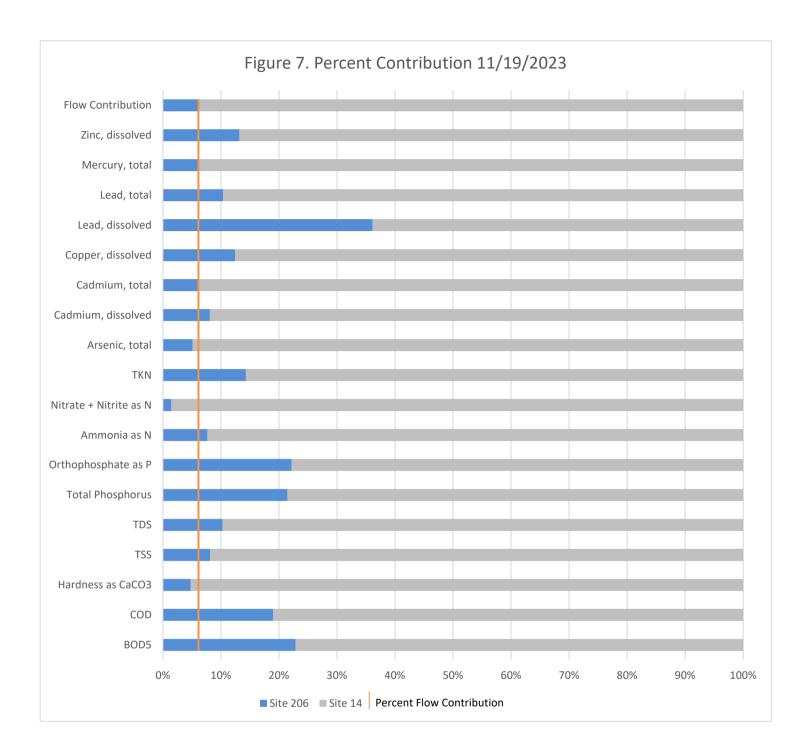
- Figure 3. Americana Subwatershed Water Level WY 2024 October-November
- Figure 4. Americana Subwatershed Water Level WY 2024 January-March
- Figure 5. Americana Subwatershed Water Level WY 2024 April-June
- Figure 6. Americana Subwatershed Water Level WY 2024 July-September
- Figure 7. Percent Contribution for Storm Event 11/19/2023
- Figure 8. Percent Contribution for Storm Event 2/1/2024
- Figure 9. Percent Contribution for Storm Event 2/26/2024

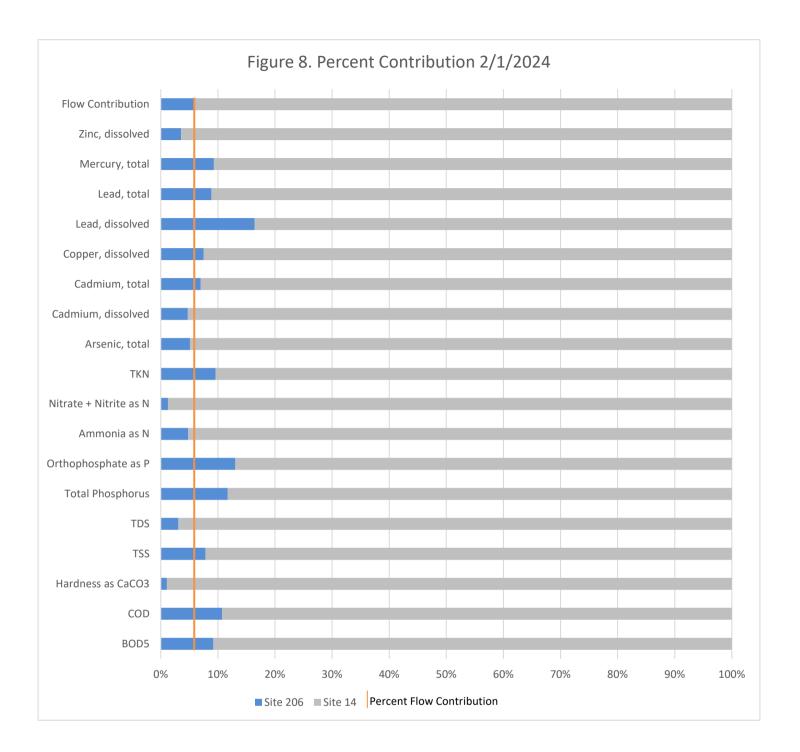

Americana Subwatershed Review WY24 Q1 Figure 3.

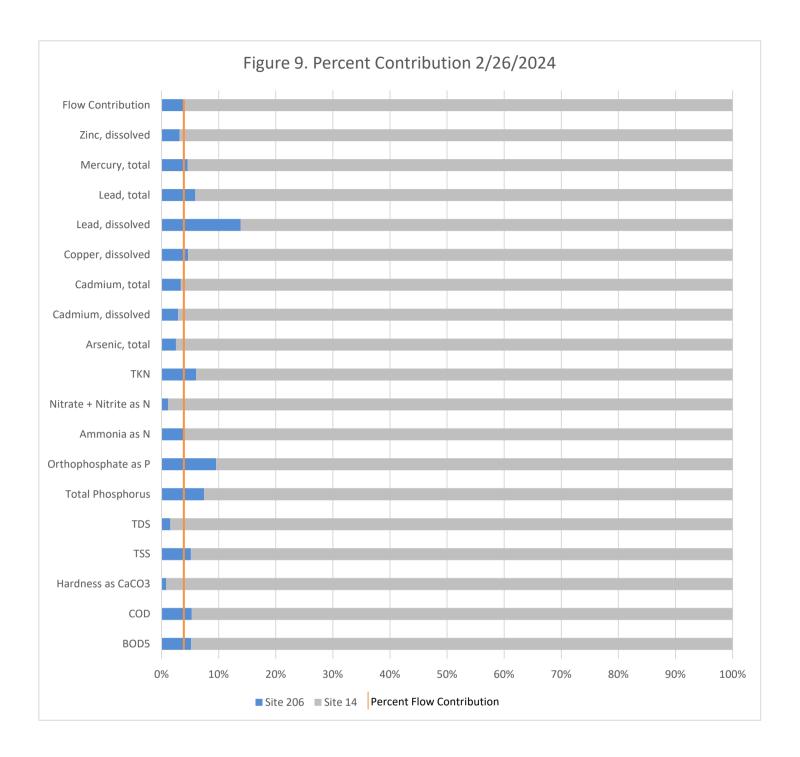
Color	Beginning	Duration		
Code	Date Time	(hrs)	Sites Included	Non-stormwater source
	10/3/2023 23:00:00	10.5	AS_7	AS_7 Subcatchment
	10/5/2023 15:00:00	6.0	AS_4, Site 14	AS_4 Subcatchment
	10/6/2023 23:00:00	9.5	AS_7	AS_7 Subcatchment
	10/8/2023 23:00:00	10.0	AS_7	AS_7 Subcatchment
	10/12/2023 8:00:00	10.0	AS_4, AS_7, Site 14	AS_4 Subcatchment
	10/15/2023 10:00:00	10.0	AS_1, AS_4	AS_1 Subcatchment
	10/16/2023 18:30:00	2.0	AS_1, Site 14	AS_1 Subcatchment
	10/17/2023 20:30:00	3.0	AS_4	AS_4 Subcatchment
	10/26/2023 18:30:00	25.0	AS_7	AS_7 Subcatchment
	10/28/2023 8:00:00	5.0	AS_7	AS_7 Subcatchment
	11/1/2023 13:00:00	2.5	AS_4, Site 14	AS_4 Subcatchment
	11/13/2023 13:00:00	2.5	AS_1, AS_4, Site 14	AS_1 Subcatchment
	11/20/2023 9:00:00	4.0	AS_4	AS_4 Subcatchment
	11/20/2023 13:00:00	2.0	AS_1, AS_4, Site 14	AS_1 Subcatchment
	11/21/2023 13:00:00	4.5	AS_1, AS_4, Site 14	AS_1 Subcatchment
	11/22/2023 0:00:00	3.0	AS_1, AS_4, Site 14	AS_1 Subcatchment
	11/22/2023 7:00:00	127.0	AS_1, AS_4, Site 14 (elongated)	AS_1 Subcatchment
	11/29/2023 12:00:00	2.0	AS_1, Site 14	AS_1 Subcatchment
	11/30/2023 12:00:00	4.0	AS_1, Site 14	AS_1 Subcatchment
	12/12/2023 8:00:00	60.0	AS_1, AS_4	AS_1 Subcatchment
	12/18/2023 15:00:00	2.5	AS_1, Site 14	AS_1 Subcatchment
	12/27/2023 15:30:00	22.5	AS_1, AS_4	AS_1 Subcatchment
	12/30/2023 13:00:00	2.0	AS_1, AS_4	AS_1 Subcatchment
	12/31/2023 18:00:00	2.5	AS_1, AS_4	AS_1 Subcatchment



Color	Beginning	Duration		
Code	Date Time	(hrs)	Sites Included	Non-stormwater source
	1/3/2024 9:00:00	5.0	AS_4	AS_4 Subcatchment
	1/4/2024 8:00:00	4.5	AS_4	AS_4 Subcatchment
	1/4/2024 12:30:00	5.0	AS_4, AS_7	AS_4 Subcatchment
	1/6/2024 22:00:00	5.0	AS_1, AS_4, AS_9, Site 14	AS_1 Subcatchment
	1/14/2024 13:00:00	7.0	AS_1, AS_4, Site 14	AS_1 Subcatchment
	1/21/2024 11:00:00	9.5	AS_1, AS_4, AS_7, Site 14	AS_1 Subcatchment
	1/23/2024 13:00:00	4.5	AS_1, AS_4, AS_7, Site 14	AS_1 Subcatchment
	2/8/2024 1:00:00	129.5	AS_8 (elongated)	Hull's Gulch
	2/20/2024 18:30:00	44.0	AS_1, AS_4, AS_7, Site 14	AS_1 Subcatchment
	2/26/2024 18:00:00	47.5	AS_8	AS_8 Subcatchment
	3/8/2024 6:00:00	10.5	AS_4, AS_7	AS_4 Subcatchment
	3/11/2024 7:30:00	9.0	AS_4, AS_7	AS_4 Subcatchment
	3/13/2024 7:30:00	9.0	AS_4	AS_4 Subcatchment
	3/14/2024 7:30:00	7.0	AS_4	AS_4 Subcatchment
	3/19/2024 11:30:00	2.0	AS_1, AS_4, AS_7, Site 14	AS_1 Subcatchment
	3/22/2024 5:30:00	3.0	AS_1, AS_4, AS_7, Site 14	AS_1 Subcatchment
	3/25/2024 1:30:00	14.0	AS_4	AS_4 Subcatchment
	3/26/2024 4:30:00	13.0	AS_4	AS_4 Subcatchment
	3/27/2024 5:00:00	10.5	AS_4	AS_4 Subcatchment
	3/29/2024 5:00:00	10.5	AS_4	AS_4 Subcatchment


Note: Reoccurring water level spikes were observed at the AS_7 station. These spikes occur for an approximate duration of 4 hours between 2330 and 0900. The spikes have been omitted from this anomaly summary due to the uniformity of the spikes and similarity to spikes observed during WY 2023.


Color	Beginning	Duration		
Code	Date Time	(hrs)	Sites Included	Non-stormwater source
	4/8/2024 22:00:00	6.0	AS_1, AS_4, AS_7, Site 14	AS_1 Subcatchment
	4/10/2024 23:00:00	5.0	AS_1, AS_4, AS_7, Site 14	AS_1 Subcatchment
	4/12/2024 0:30:00	2.0	AS_4, AS_7, Site 14	AS_4 Subcatchment
	4/14/2024 11:00:00	17.5	AS_1, AS_4, AS_7, Site 14	AS_1 Subcatchment
	4/26/2024 7:00:00	19.5	AS_1, AS_4, AS_7, Site 14	AS_1 Subcatchment
	5/11/2024 7:00:00	2.0	AS_1, AS_4, Site 14	AS_1 Subcatchment
	5/20/2024 9:00:00	3.0	AS_4	AS_4 Subcatchment
	5/24/2024 14:00:00	3.0	AS_1, AS_4, Site 14	AS_1 Subcatchment
	5/25/2024 13:00:00	4.0	AS_1, Site 14	AS_1 Subcatchment
	5/29/2024 12:30:00	2.0	AS_1, AS_4, Site 14	AS_1 Subcatchment
	5/30/2024 7:00:00	5.0	AS_4	AS_4 Subcatchment
	5/31/2024 9:30:00	2.0	AS_1, Site 14	AS_1 Subcatchment
	5/31/2024 16:00:00	4.0	AS_1, Site 14	AS_1 Subcatchment
	6/4/2024 18:00:00	2.5	AS_1, Site 14	AS_1 Subcatchment
	6/6/2024 10:30:00	4.0	AS_1, Site 14	AS_1 Subcatchment
	6/9/2024 19:00:00	3.0	AS_1, Site 14	AS_1 Subcatchment
	6/10/2024 7:00:00	2.5	AS_4	AS_4 Subcatchment
	6/10/2024 16:00:00	2.5	AS_4	AS_4 Subcatchment
	6/12/2024 14:00:00	4.0	AS_4, Site 14	AS_4 Subcatchment
	6/13/2024 23:30:00	4.0	AS_1, Site 14	AS_1 Subcatchment
	6/21/2024 1:00:00	4.0	AS_1, Site 14	AS_1 Subcatchment
	6/21/2024 7:30:00	4.5	AS_1, AS_4, Site 14	AS_1 Subcatchment
	6/25/2024 0:30:00	3.5	AS_1, AS_4, AS_7, Site 14	AS_1 Subcatchment
	6/27/2024 0:00:00	4.0	AS_4, AS_7	AS_4 Subcatchment
	6/27/2024 23:00:00	3.5	AS_4, AS_7, Site 14	AS_4 Subcatchment
	6/28/2024 4:00:00	2.5	AS_4, AS_7, Site 14	AS_4 Subcatchment
	6/29/2024 0:00:00	7.0	AS_1, AS_4, AS_7, Site 14	AS_1 Subcatchment



Note: Reoccurring water level spikes were observed at the AS_7 station. These spikes occur for an approximate duration of 4 hours between 2330 and 0900. The spikes have been omitted from this anomaly summary due to the uniformity of the spikes and similarity to spikes observed during WY 2023.

Color	Beginning	Duration		
Code	Date Time	(hrs)	Sites Included	Non-stormwater source
	7/9/2024 11:00:00	3.0	AS_1, AS_4, Site 14	AS_1 Subcatchment
	7/12/2024 12:00:00	2.0	AS_1, AS_4, Site 14	AS_1 Subcatchment
	7/14/2024 7:00:00	8.0	AS_4, Site 14	AS_4 Subcatchment
	7/15/2024 8:30:00	4.5	AS_1, Site 14	AS_1 Subcatchment
	7/20/2024 21:00:00	2.5	AS_1, Site 14	AS_1 Subcatchment
	7/22/2024 7:00:00	2.5	AS_1, AS_4, Site 14	AS_1 Subcatchment
	7/26/2024 13:00:00	28.5	AS_4	AS_4 Subcatchment
	7/30/2024 10:30:00	4.0	AS_1, AS_4, AS_7, Site 14	AS_1 Subcatchment
	8/1/2024 6:30:00	10.5	AS_4, AS_7, Site 14	AS_4 Subcatchment
	8/3/2024 5:30:00	6.5	AS_4, Site 14	AS_4 Subcatchment
	8/8/2024 21:30:00	12.5	AS_4, AS_7, Site 14	AS_4 Subcatchment
	8/14/2024 13:30:00	3.5	AS_4, Site 14	AS_4 Subcatchment
	8/21/2024 13:30:00	3.5	AS_1, Site 14	AS_1 Subcatchment
	8/23/2024 11:00:00	2.5	AS_1, Site 14	AS_1 Subcatchment
	8/26/2024 13:30:00	4.0	AS_1, Site 14	AS_1 Subcatchment
	8/29/2024 7:00:00	7.5	AS_4, Site 14	AS_1 Subcatchment
	8/30/2024 4:30:00	9.0	AS_4	AS_4 Subcatchment
	9/4/2024 19:30:00	22.0	AS_4	AS_4 Subcatchment
	9/19/2024 5:30:00	8.0	AS_4, AS_7, Site 14	AS_4 Subcatchment
	9/20/2024 7:30:00	6.0	AS_4, AS_7, Site 14	AS_4 Subcatchment
	9/21/2024 19:30:00	3.0	AS_4	AS_4 Subcatchment
	9/23/2024 7:30:00	8.5	AS_4	AS_4 Subcatchment
	9/24/2024 9:00:00	6.5	AS_1, AS_4, Site 14	AS_1 Subcatchment
	9/25/2024 12:00:00	5.5	AS_1, Site 14	AS_1 Subcatchment
	9/26/2024 7:00:00	5.5	AS_4	AS_4 Subcatchment
	9/30/2024 7:00:00	8.0	AS_4	AS_4 Subcatchment

